Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 5.8 Improper Integrals (TI8)
Learning Outcomes
I can compute improper integrals.
Subsection 5.8.1 Activities
Activity 5.8.1 .
Recall
\(\displaystyle \int\frac{1}{x^2}\, dx=-\frac{1}{x}+C\text{.}\) Compute the following definite integrals.
(a)
\(\displaystyle \int_{1/100}^1 \frac{1}{x^2}\, dx=\left[-\frac{1}{x}\right]_{1/100}^1\)
(b)
\(\displaystyle \int_{1/10000}^1 \frac{1}{x^2}\, dx\)
(c)
\(\displaystyle \int_{1/1000000}^1 \frac{1}{x^2}\, dx\)
Activity 5.8.2 .
What do you notice about
\(\displaystyle \int_{a}^1 \frac{1}{x^2}\, dx\) as
\(a\) approached 0 in
Activity 5.8.1 ?
\(\displaystyle \int_{a}^1 \frac{1}{x^2}\, dx\) approaches
\(0\text{.}\)
\(\displaystyle \int_{a}^1 \frac{1}{x^2}\, dx\) approaches a finite constant greater than
\(0\text{.}\)
\(\displaystyle \int_{a}^1 \frac{1}{x^2}\, dx\) approaches
\(\infty\text{.}\)
There is not enough information.
Activity 5.8.3 .
Compute the following definite integrals, again using
\(\displaystyle \int\frac{1}{x^2}\, dx=-\frac{1}{x}+C\text{.}\)
(a)
\(\displaystyle \int_{1}^{100} \frac{1}{x^2}\, dx=\left[-\frac{1}{x}\right]_{1}^{100}\)
(b)
\(\displaystyle \int_{1}^{10000} \frac{1}{x^2}\, dx\)
(c)
\(\displaystyle \int_{1}^{1000000} \frac{1}{x^2}\, dx\)
Activity 5.8.4 .
What do you notice about
\(\displaystyle \int_{1}^b \frac{1}{x^2}\, dx\) as
\(b\) approached
\(\infty\) in
Activity 5.8.3 ?
\(\displaystyle \int_{1}^b \frac{1}{x^2}\, dx\) approaches
\(0\text{.}\)
\(\displaystyle \int_{1}^b \frac{1}{x^2}\, dx\) approaches a finite constant greater than
\(0\text{.}\)
\(\displaystyle \int_{1}^b \frac{1}{x^2}\, dx\) approaches
\(\infty\text{.}\)
There is not enough information.
Activity 5.8.5 .
Recall
\(\displaystyle \int\frac{1}{\sqrt x}\, dx=2\sqrt{x}+C\text{.}\) Compute the following definite integrals.
(a)
\(\displaystyle \int_{1/100}^1 \frac{1}{\sqrt{x}}\, dx=\left[2\sqrt{x}\right]_{1/100}^1\)
(b)
\(\displaystyle \int_{1/10000}^1 \frac{1}{\sqrt{x}}\, dx\)
(c)
\(\displaystyle \int_{1/1000000}^1 \frac{1}{\sqrt{x}}\, dx\)
Activity 5.8.6 .
(a)
What do you notice about the integral
\(\displaystyle \int_{a}^1 \frac{1}{\sqrt{x}}\, dx\) as
\(a\) approached 0 in
Activity 5.8.5 ?
\(\displaystyle \int_{a}^1 \frac{1}{\sqrt{x}}\, dx\) approaches
\(0\text{.}\)
\(\displaystyle \int_{a}^1 \frac{1}{\sqrt{x}}\, dx\) approaches a finite constant greater than
\(0\text{.}\)
\(\displaystyle \int_{a}^1 \frac{1}{\sqrt{x}}\, dx\) approaches
\(\infty\text{.}\)
There is not enough information.
(b)
Activity 5.8.7 .
Compute the following definite integrals using
\(\displaystyle \int\frac{1}{\sqrt x}\, dx=2\sqrt{x}+C\text{.}\)
(a)
\(\displaystyle \int_{1}^{100} \frac{1}{\sqrt{x}}\, dx = \left[2\sqrt{x}\right]_{1}^{100}\)
(b)
\(\displaystyle \int_{1}^{10000} \frac{1}{\sqrt{x}}\, dx\)
(c)
\(\displaystyle \int_{1}^{1000000} \frac{1}{\sqrt{x}}\, dx\)
Activity 5.8.8 .
(a)
What do you notice about the integral
\(\displaystyle \int_{1}^b \frac{1}{\sqrt{x}}\, dx\) as
\(b\) approached
\(\infty\) in
Activity 5.8.7 ?
\(\displaystyle \int_{1}^b \frac{1}{\sqrt{x}}\,dx\) approaches
\(0\text{.}\)
\(\displaystyle \int_{1}^b \frac{1}{\sqrt{x}}\, dx\) approaches a finite constant greater than
\(0\text{.}\)
\(\displaystyle \int_{1}^b \frac{1}{\sqrt{x}}\, dx\) approaches
\(\infty\text{.}\)
There is not enough information.
(b)
Definition 5.8.9 .
For a function \(f(x)\) and a constant \(a\text{,}\) we let \(\displaystyle \int_a^\infty f(x)\, dx\) denote
\begin{equation*}
\int_a^\infty f(x)\, dx=\lim_{b\to\infty}\left( \int_a^b f(x)\, dx\right)\text{.}
\end{equation*}
If this limit is a defined real number, then we say \(\displaystyle \int_a^\infty f(x)\, dx\) is convergent . Otherwise, it is divergent .
Similarly,
\begin{equation*}
\int_{-\infty}^b f(x)\, dx=\lim_{a\to-\infty}\left( \int_a^b f(x) \, dx\right).
\end{equation*}
Activity 5.8.10 .
Which of these limits is equal to
\(\displaystyle\int_1^\infty \frac{1}{x^2} \, dx\text{?}\)
\(\displaystyle \displaystyle\lim_{b\to\infty}\int_1^b\frac{1}{x^2}\, dx\)
\(\displaystyle \displaystyle\lim_{b\to\infty}\left[-\frac{1}{x}\right]_1^b\)
\(\displaystyle \displaystyle\lim_{b\to\infty}\left[-\frac{1}{b}+1\right]\)
All of these.
Activity 5.8.11 .
Given the result of
Activity 5.8.10 , what is
\(\displaystyle\int_1^\infty \frac{1}{x^2}\, dx\text{?}\)
\(\displaystyle 0\)
\(\displaystyle 1\)
\(\displaystyle \infty\)
\(\displaystyle -\infty\)
Activity 5.8.12 .
Does
\(\displaystyle\int_1^\infty \frac{1}{\sqrt x}\, dx\) converge or diverge?
Converges because \(\displaystyle\lim_{b\to 0^+}\left[2\sqrt b-2\right]\) converges.
Diverges because \(\displaystyle\lim_{b\to 0^+}\left[2\sqrt b-2\right]\) diverges.
Converges because \(\displaystyle\lim_{b\to \infty}\left[2\sqrt b-2\right]\) converges.
Diverges because \(\displaystyle\lim_{b\to \infty}\left[2\sqrt b-2\right]\) diverges.
Definition 5.8.13 .
For a function \(f(x)\) with a vertical asymptote at \(x=c>a\text{,}\) we let \(\displaystyle \int_a^c f(x)\, dx\) denote
\begin{equation*}
\int_a^c f(x)\, dx=\lim_{b\to c^{-}}\left( \int_a^b f(x)\, dx\right)\text{.}
\end{equation*}
For a function \(f(x)\) with a vertical asymptote at \(x=c<b\text{,}\) we let \(\displaystyle \int_c^b f(x)\, dx\) denote
\begin{equation*}
\int_c^b f(x)\, dx=\lim_{a\to c^{+}}\left( \int_a^b f(x)\, dx\right)\text{.}
\end{equation*}
Activity 5.8.14 .
Which of these limits is equal to
\(\displaystyle\int_0^1 \frac{1}{\sqrt x} \, dx\text{?}\)
\(\displaystyle \displaystyle\lim_{a\to 0^+}\int_a^1\frac{1}{\sqrt x}\, dx\)
\(\displaystyle \displaystyle\lim_{a\to 0^+}\left[2\sqrt x\right]_a^1\)
\(\displaystyle \displaystyle\lim_{a\to 0^+}\left[2-2\sqrt a\right]\)
All of these.
Activity 5.8.15 .
Given the this result, what is
\(\displaystyle\int_0^1 \frac{1}{\sqrt x}\, dx\text{?}\)
\(\displaystyle 0\)
\(\displaystyle 1\)
\(\displaystyle 2\)
\(\displaystyle \infty\)
Activity 5.8.16 .
Does
\(\displaystyle\int_0^1 \frac{1}{x^2}\, dx\) converge or diverge?
Converges because \(\displaystyle\lim_{a\to 0^+}\left[-1+\frac{1}{a}\right]\) converges.
Diverges because \(\displaystyle\lim_{a\to 0^+}\left[-1+\frac{1}{a}\right]\) diverges.
Converges because \(\displaystyle\lim_{a\to 1^-}\left[-1+\frac{1}{a}\right]\) converges.
Diverges because \(\displaystyle\lim_{a\to 1^-}\left[-1+\frac{1}{a}\right]\) diverges.
Activity 5.8.17 .
Explain and demonstrate how to write each of the following improper integrals as a limit, and why this limit converges or diverges.
(a)
\(\displaystyle\int_{ -2 }^{ +\infty } \frac{1}{\sqrt{x + 6}}\, dx.\)
(b)
\(\displaystyle\int_{ -4 }^{ -2 } \frac{1}{{\left(x + 4\right)}^{\frac{4}{3}}}\, dx.\)
(c)
\(\displaystyle\int_{ -5 }^{ 0 } \frac{1}{{\left(x + 5\right)}^{\frac{5}{9}}}\, dx.\)
(d)
\(\displaystyle\int_{ 10 }^{ +\infty } \frac{1}{{\left(x - 8\right)}^{\frac{4}{3}}}\, dx.\)
Fact 5.8.18 .
Suppose that
\(0< p\) and
\(p\neq 1\text{.}\) Applying the integration power rule gives us the indefinite integral
\(\displaystyle \int \frac{1}{x^p}\, dx=\frac{1}{(1-p)}x^{1-p}+C\text{.}\)
Activity 5.8.19 .
(a)
If
\(0< p< 1\text{,}\) which of the following statements must be true? Select all that apply.
\(\displaystyle \int_1^\infty \frac{1}{x^p}\, dx\) converges.
\(\displaystyle \int_1^\infty \frac{1}{x^p}\, dx\) diverges.
(b)
If
\(p>1\text{,}\) which of the following statements must be true? Select all that apply.
\(\displaystyle \int_1^\infty \frac{1}{x^p}\, dx\) converges.
\(\displaystyle \int_1^\infty \frac{1}{x^p}\, dx\) diverges.
Activity 5.8.20 .
(a)
If
\(0< p< 1\text{,}\) which of the following statements must be true?
\(\displaystyle \int_0^1 \frac{1}{x^p}\, dx\) converges.
\(\displaystyle \int_0^1 \frac{1}{x^p}\, dx\) diverges.
(b)
If
\(p>1\text{,}\) which of the following statements must be true?
\(\displaystyle \int_0^1 \frac{1}{x^p}\, dx\) converges.
\(\displaystyle \int_0^1 \frac{1}{x^p}\, dx\) diverges.
Activity 5.8.21 .
Consider when
\(p=1\text{.}\) Then
\(\dfrac{1}{x^p}=\dfrac{1}{x}\) and
\(\displaystyle \int \frac{1}{x^p}\, dx=\displaystyle \int \frac{1}{x}\, dx=\ln|x|+C\text{.}\)
(a)
What can we conclude about
\(\displaystyle \int_1^\infty \frac{1}{x}\, dx\text{?}\)
\(\displaystyle \int_1^\infty \frac{1}{x}\, dx\) converges.
\(\displaystyle \int_1^\infty \frac{1}{x}\, dx\) diverges.
There is not enough information to determine whether this integral converges or diverges.
(b)
What can we conclude about
\(\displaystyle \int_0^1 \frac{1}{x}\, dx\text{?}\)
\(\displaystyle \int_0^1 \frac{1}{x}\, dx\) converges.
\(\displaystyle \int_0^1 \frac{1}{x}\, dx\) diverges.
There is not enough information to determine whether this integral converges or diverges.
Fact 5.8.22 .
Activity 5.8.23 .
Consider the plots of
\(f(x), g(x), h(x) \) where
\(0 < g(x) < f(x) < h(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
If \(\displaystyle \int_1^\infty f(x)\, dx\) is convergent, what can we say about \(g(x), h(x)\text{?}\)
\(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both convergent.
\(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both divergent.
Whether or not \(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are convergent or divergent cannot be determined.
\(\displaystyle \int_1^\infty g(x)\, dx\) is convergent and \(\displaystyle \int_1^\infty h(x)\, dx\) is divergent.
\(\displaystyle \int_1^\infty g(x)\, dx\) is convergent and \(\displaystyle \int_1^\infty h(x)\, dx\) could be either convergent or divergent.
Activity 5.8.24 .
Consider the plots of
\(f(x), g(x), h(x) \) where
\(0 < g(x) < f(x) < h(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
If
\(\displaystyle \int_1^\infty f(x)\, dx\) is divergent, what can we say about
\(g(x), h(x)\text{?}\)
\(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both convergent.
\(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both divergent.
Whether or not \(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are convergent or divergent cannot be determined.
\(\displaystyle \int_1^\infty g(x)\, dx\) could be either convergent or divergent and \(\displaystyle \int_1^\infty h(x)\, dx\) is divergent.
\(\displaystyle \int_1^\infty g(x)\, dx\) is convergent and \(\displaystyle \int_1^\infty h(x)\, dx\) is divergent.
Activity 5.8.25 .
Consider the plots of
\(f(x), g(x), h(x) \) where
\(0 < g(x) < f(x) < h(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
If
\(\displaystyle \int_0^1 f(x)\, dx\) is convergent, what can we say about
\(g(x)\) and
\(h(x)\text{?}\)
\(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both convergent.
\(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both divergent.
Whether or not \(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are convergent or divergent cannot be determined.
\(\displaystyle \int_0^1 g(x)\, dx\) is convergent and \(\displaystyle \int_0^1 h(x)\, dx\) is divergent.
\(\displaystyle \int_0^1 g(x)\, dx\) is convergent and \(\displaystyle \int_0^1 h(x)\, dx\) can either be convergent or divergent.
Activity 5.8.26 .
Consider the plots of
\(f(x), g(x), h(x) \) where
\(0 < g(x) < f(x) < h(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
If
\(\displaystyle \int_0^1 f(x)\, dx\) is divergent, what can we say about
\(g(x)\) and
\(h(x)\text{?}\)
\(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both convergent.
\(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both divergent.
Whether or not \(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are convergent or divergent cannot be determined.
\(\displaystyle \int_0^1 g(x)\, dx\) can be either convergent or divergent and \(\displaystyle \int_0^1 h(x)\, dx\) is divergent.
\(\displaystyle \int_0^1 g(x)\, dx\) is convergent and \(\displaystyle \int_0^1 h(x)\, dx\) is divergent.
Fact 5.8.27 .
Let \(f(x), g(x)\) be functions such that for \(a<x<b\text{,}\) \(0\leq f(x) \leq g(x)\text{.}\) Then
\begin{equation*}
\displaystyle 0\leq \int_a^b f(x)\, dx\leq \int_a^b g(x)\, dx\text{.}
\end{equation*}
In particular:
If
\(\displaystyle\int_a^b g(x)\, dx\) converges, so does the smaller
\(\displaystyle\int_a^b f(x)\, dx\text{.}\)
If
\(\displaystyle\int_a^b f(x)\, dx\) diverges, so does the bigger
\(\displaystyle\int_a^b g(x)\, dx\text{.}\)
Activity 5.8.28 .
Compare \(\dfrac{1}{x^3+1}\) to one of the following functions where \(x>2\) and use this to determine if \(\displaystyle \int_2^\infty \frac{1}{x^3+1}\, dx\) is convergent or divergent.
\(\displaystyle \dfrac{1}{x}\)
\(\displaystyle \dfrac{1}{\sqrt{x}}\)
\(\displaystyle \dfrac{1}{x^2}\)
\(\displaystyle \dfrac{1}{x^3}\)
Activity 5.8.29 .
Comparing \(\dfrac{1}{x^3-4}\) to which of the following functions where \(x>3\) allows you to determine that \(\displaystyle\int_3^{\infty} \dfrac{1}{x^3-4}\, dx\) converges?
\(\displaystyle \displaystyle\frac{1}{x^3+x}\)
\(\displaystyle \displaystyle\frac{1}{4x^3}\)
\(\displaystyle \displaystyle\frac{1}{x^3}\)
\(\displaystyle \displaystyle\frac{1}{x^3-x^3/2}\)
Activity 5.8.30 .
(a)
Find
\(\displaystyle \int_{\pi/2}^a \cos(x)\, dx\text{.}\)
(b)
Which of the following is true about
\(\int_{\pi/2}^\infty \cos(x)\, dx\text{?}\)
\(\displaystyle \int_{\pi/2}^\infty \cos(x)\, dx\) is convergent.
\(\displaystyle \int_{\pi/2}^\infty \cos(x)\, dx\) is divergent.
More information is needed.
Subsection 5.8.2 Videos
Figure 85. Video: I can compute improper integrals, \(p>1\)
Figure 86. Video: I can compute improper integrals, \(p < 1\)
Subsection 5.8.3 Exercises