Skip to main content
Logo image

Section 5.8 Improper Integrals (TI8)

Subsection 5.8.1 Activities

Activity 5.8.1.

Recall \(\displaystyle \int\frac{1}{x^2}\, dx=-\frac{1}{x}+C\text{.}\) Compute the following definite integrals.
(a)
\(\displaystyle \int_{1/100}^1 \frac{1}{x^2}\, dx=\left[-\frac{1}{x}\right]_{1/100}^1\)

Activity 5.8.2.

What do you notice about \(\displaystyle \int_{a}^1 \frac{1}{x^2}\, dx\) as \(a\) approached 0 in Activity 5.8.1?
  1. \(\displaystyle \int_{a}^1 \frac{1}{x^2}\, dx\) approaches \(0\text{.}\)
  2. \(\displaystyle \int_{a}^1 \frac{1}{x^2}\, dx\) approaches a finite constant greater than \(0\text{.}\)
  3. \(\displaystyle \int_{a}^1 \frac{1}{x^2}\, dx\) approaches \(\infty\text{.}\)
  4. There is not enough information.

Activity 5.8.3.

Compute the following definite integrals, again using \(\displaystyle \int\frac{1}{x^2}\, dx=-\frac{1}{x}+C\text{.}\)
(a)
\(\displaystyle \int_{1}^{100} \frac{1}{x^2}\, dx=\left[-\frac{1}{x}\right]_{1}^{100}\)

Activity 5.8.4.

What do you notice about \(\displaystyle \int_{1}^b \frac{1}{x^2}\, dx\) as \(b\) approached \(\infty\) in Activity 5.8.3?
  1. \(\displaystyle \int_{1}^b \frac{1}{x^2}\, dx\) approaches \(0\text{.}\)
  2. \(\displaystyle \int_{1}^b \frac{1}{x^2}\, dx\) approaches a finite constant greater than \(0\text{.}\)
  3. \(\displaystyle \int_{1}^b \frac{1}{x^2}\, dx\) approaches \(\infty\text{.}\)
  4. There is not enough information.

Activity 5.8.5.

Recall \(\displaystyle \int\frac{1}{\sqrt x}\, dx=2\sqrt{x}+C\text{.}\) Compute the following definite integrals.
(a)
\(\displaystyle \int_{1/100}^1 \frac{1}{\sqrt{x}}\, dx=\left[2\sqrt{x}\right]_{1/100}^1\)

Activity 5.8.6.

(a)
What do you notice about the integral \(\displaystyle \int_{a}^1 \frac{1}{\sqrt{x}}\, dx\) as \(a\) approached 0 in Activity 5.8.5?
  1. \(\displaystyle \int_{a}^1 \frac{1}{\sqrt{x}}\, dx\) approaches \(0\text{.}\)
  2. \(\displaystyle \int_{a}^1 \frac{1}{\sqrt{x}}\, dx\) approaches a finite constant greater than \(0\text{.}\)
  3. \(\displaystyle \int_{a}^1 \frac{1}{\sqrt{x}}\, dx\) approaches \(\infty\text{.}\)
  4. There is not enough information.

Activity 5.8.7.

Compute the following definite integrals using \(\displaystyle \int\frac{1}{\sqrt x}\, dx=2\sqrt{x}+C\text{.}\)
(a)
\(\displaystyle \int_{1}^{100} \frac{1}{\sqrt{x}}\, dx = \left[2\sqrt{x}\right]_{1}^{100}\)

Activity 5.8.8.

(a)
What do you notice about the integral \(\displaystyle \int_{1}^b \frac{1}{\sqrt{x}}\, dx\) as \(b\) approached \(\infty\) in Activity 5.8.7?
  1. \(\displaystyle \int_{1}^b \frac{1}{\sqrt{x}}\,dx\) approaches \(0\text{.}\)
  2. \(\displaystyle \int_{1}^b \frac{1}{\sqrt{x}}\, dx\) approaches a finite constant greater than \(0\text{.}\)
  3. \(\displaystyle \int_{1}^b \frac{1}{\sqrt{x}}\, dx\) approaches \(\infty\text{.}\)
  4. There is not enough information.

Definition 5.8.9.

For a function \(f(x)\) and a constant \(a\text{,}\) we let \(\displaystyle \int_a^\infty f(x)\, dx\) denote
\begin{equation*} \int_a^\infty f(x)\, dx=\lim_{b\to\infty}\left( \int_a^b f(x)\, dx\right)\text{.} \end{equation*}
If this limit is a defined real number, then we say \(\displaystyle \int_a^\infty f(x)\, dx\) is convergent. Otherwise, it is divergent.
Similarly,
\begin{equation*} \int_{-\infty}^b f(x)\, dx=\lim_{a\to-\infty}\left( \int_a^b f(x) \, dx\right). \end{equation*}

Activity 5.8.10.

Which of these limits is equal to \(\displaystyle\int_1^\infty \frac{1}{x^2} \, dx\text{?}\)
  1. \(\displaystyle \displaystyle\lim_{b\to\infty}\int_1^b\frac{1}{x^2}\, dx\)
  2. \(\displaystyle \displaystyle\lim_{b\to\infty}\left[-\frac{1}{x}\right]_1^b\)
  3. \(\displaystyle \displaystyle\lim_{b\to\infty}\left[-\frac{1}{b}+1\right]\)
  4. All of these.

Activity 5.8.12.

Does \(\displaystyle\int_1^\infty \frac{1}{\sqrt x}\, dx\) converge or diverge?
  1. Converges because \(\displaystyle\lim_{b\to 0^+}\left[2\sqrt b-2\right]\) converges.
  2. Diverges because \(\displaystyle\lim_{b\to 0^+}\left[2\sqrt b-2\right]\) diverges.
  3. Converges because \(\displaystyle\lim_{b\to \infty}\left[2\sqrt b-2\right]\) converges.
  4. Diverges because \(\displaystyle\lim_{b\to \infty}\left[2\sqrt b-2\right]\) diverges.

Definition 5.8.13.

For a function \(f(x)\) with a vertical asymptote at \(x=c>a\text{,}\) we let \(\displaystyle \int_a^c f(x)\, dx\) denote
\begin{equation*} \int_a^c f(x)\, dx=\lim_{b\to c^{-}}\left( \int_a^b f(x)\, dx\right)\text{.} \end{equation*}
For a function \(f(x)\) with a vertical asymptote at \(x=c<b\text{,}\) we let \(\displaystyle \int_c^b f(x)\, dx\) denote
\begin{equation*} \int_c^b f(x)\, dx=\lim_{a\to c^{+}}\left( \int_a^b f(x)\, dx\right)\text{.} \end{equation*}

Activity 5.8.14.

Which of these limits is equal to \(\displaystyle\int_0^1 \frac{1}{\sqrt x} \, dx\text{?}\)
  1. \(\displaystyle \displaystyle\lim_{a\to 0^+}\int_a^1\frac{1}{\sqrt x}\, dx\)
  2. \(\displaystyle \displaystyle\lim_{a\to 0^+}\left[2\sqrt x\right]_a^1\)
  3. \(\displaystyle \displaystyle\lim_{a\to 0^+}\left[2-2\sqrt a\right]\)
  4. All of these.

Activity 5.8.16.

Does \(\displaystyle\int_0^1 \frac{1}{x^2}\, dx\) converge or diverge?
  1. Converges because \(\displaystyle\lim_{a\to 0^+}\left[-1+\frac{1}{a}\right]\) converges.
  2. Diverges because \(\displaystyle\lim_{a\to 0^+}\left[-1+\frac{1}{a}\right]\) diverges.
  3. Converges because \(\displaystyle\lim_{a\to 1^-}\left[-1+\frac{1}{a}\right]\) converges.
  4. Diverges because \(\displaystyle\lim_{a\to 1^-}\left[-1+\frac{1}{a}\right]\) diverges.

Activity 5.8.17.

Explain and demonstrate how to write each of the following improper integrals as a limit, and why this limit converges or diverges.
(b)
\(\displaystyle\int_{ -4 }^{ -2 } \frac{1}{{\left(x + 4\right)}^{\frac{4}{3}}}\, dx.\)
(c)
\(\displaystyle\int_{ -5 }^{ 0 } \frac{1}{{\left(x + 5\right)}^{\frac{5}{9}}}\, dx.\)
(d)
\(\displaystyle\int_{ 10 }^{ +\infty } \frac{1}{{\left(x - 8\right)}^{\frac{4}{3}}}\, dx.\)

Activity 5.8.19.

Activity 5.8.20.

Activity 5.8.21.

Consider when \(p=1\text{.}\) Then \(\dfrac{1}{x^p}=\dfrac{1}{x}\) and \(\displaystyle \int \frac{1}{x^p}\, dx=\displaystyle \int \frac{1}{x}\, dx=\ln|x|+C\text{.}\)

Activity 5.8.23.

Consider the plots of \(f(x), g(x), h(x) \) where \(0 < g(x) < f(x) < h(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
If \(\displaystyle \int_1^\infty f(x)\, dx\) is convergent, what can we say about \(g(x), h(x)\text{?}\)
  1. \(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both convergent.
  2. \(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both divergent.
  3. Whether or not \(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are convergent or divergent cannot be determined.
  4. \(\displaystyle \int_1^\infty g(x)\, dx\) is convergent and \(\displaystyle \int_1^\infty h(x)\, dx\) is divergent.
  5. \(\displaystyle \int_1^\infty g(x)\, dx\) is convergent and \(\displaystyle \int_1^\infty h(x)\, dx\) could be either convergent or divergent.

Activity 5.8.24.

Consider the plots of \(f(x), g(x), h(x) \) where \(0 < g(x) < f(x) < h(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
If \(\displaystyle \int_1^\infty f(x)\, dx\) is divergent, what can we say about \(g(x), h(x)\text{?}\)
  1. \(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both convergent.
  2. \(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are both divergent.
  3. Whether or not \(\displaystyle \int_1^\infty g(x)\, dx\) and \(\displaystyle \int_1^\infty h(x)\, dx\) are convergent or divergent cannot be determined.
  4. \(\displaystyle \int_1^\infty g(x)\, dx\) could be either convergent or divergent and \(\displaystyle \int_1^\infty h(x)\, dx\) is divergent.
  5. \(\displaystyle \int_1^\infty g(x)\, dx\) is convergent and \(\displaystyle \int_1^\infty h(x)\, dx\) is divergent.

Activity 5.8.25.

Consider the plots of \(f(x), g(x), h(x) \) where \(0 < g(x) < f(x) < h(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
If \(\displaystyle \int_0^1 f(x)\, dx\) is convergent, what can we say about \(g(x)\) and \(h(x)\text{?}\)
  1. \(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both convergent.
  2. \(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both divergent.
  3. Whether or not \(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are convergent or divergent cannot be determined.
  4. \(\displaystyle \int_0^1 g(x)\, dx\) is convergent and \(\displaystyle \int_0^1 h(x)\, dx\) is divergent.
  5. \(\displaystyle \int_0^1 g(x)\, dx\) is convergent and \(\displaystyle \int_0^1 h(x)\, dx\) can either be convergent or divergent.

Activity 5.8.26.

Consider the plots of \(f(x), g(x), h(x) \) where \(0 < g(x) < f(x) < h(x)\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
If \(\displaystyle \int_0^1 f(x)\, dx\) is divergent, what can we say about \(g(x)\) and \(h(x)\text{?}\)
  1. \(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both convergent.
  2. \(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are both divergent.
  3. Whether or not \(\displaystyle \int_0^1 g(x)\, dx\) and \(\displaystyle \int_0^1 h(x)\, dx\) are convergent or divergent cannot be determined.
  4. \(\displaystyle \int_0^1 g(x)\, dx\) can be either convergent or divergent and \(\displaystyle \int_0^1 h(x)\, dx\) is divergent.
  5. \(\displaystyle \int_0^1 g(x)\, dx\) is convergent and \(\displaystyle \int_0^1 h(x)\, dx\) is divergent.

Activity 5.8.28.

Compare \(\dfrac{1}{x^3+1}\) to one of the following functions where \(x>2\) and use this to determine if \(\displaystyle \int_2^\infty \frac{1}{x^3+1}\, dx\) is convergent or divergent.
  1. \(\displaystyle \dfrac{1}{x}\)
  2. \(\displaystyle \dfrac{1}{\sqrt{x}}\)
  3. \(\displaystyle \dfrac{1}{x^2}\)
  4. \(\displaystyle \dfrac{1}{x^3}\)

Activity 5.8.29.

Comparing \(\dfrac{1}{x^3-4}\) to which of the following functions where \(x>3\) allows you to determine that \(\displaystyle\int_3^{\infty} \dfrac{1}{x^3-4}\, dx\) converges?
  1. \(\displaystyle \displaystyle\frac{1}{x^3+x}\)
  2. \(\displaystyle \displaystyle\frac{1}{4x^3}\)
  3. \(\displaystyle \displaystyle\frac{1}{x^3}\)
  4. \(\displaystyle \displaystyle\frac{1}{x^3-x^3/2}\)

Subsection 5.8.2 Videos

Figure 85. Video: I can compute improper integrals, \(p>1\)
Figure 86. Video: I can compute improper integrals, \(p < 1\)

Subsection 5.8.3 Exercises