Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 3.7 Graphing with Derivatives (AD7)
Learning Outcomes
Sketch the graph of a differentiable function whose derivatives satisfy given criteria.
Subsection 3.7.1 Activities
Activity 3.7.2 .
Which of the following features best describe the curve graphed below?
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Increasing and concave up
Increasing and concave down
Decreasing and concave up
Decreasing and concave down
Answer .
D: Decreasing and concave down.
Activity 3.7.3 .
(a)
Which of the following features best describe the curve graphed below?
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Answer .
B:
\(f'>0\) and
\(f''<0 \)
(b)
For each of the
other three answer choices, sketch a curve that matches that description.
Activity 3.7.4 .
For each prompt that follows, sketch a possible graph of a function on the interval
\(-3 \lt x \lt 3\) that satisfies the stated properties.
(a)
A function
\(f(x)\) that is increasing on
\(-3 \lt x \lt 3\text{,}\) concave up on
\(-3 \lt x \lt 0\text{,}\) and concave down on
\(0 \lt x \lt 3\text{.}\)
(b)
A function
\(g(x)\) that is increasing on
\(-3 \lt x \lt 3\text{,}\) concave down on
\(-3 \lt x \lt 0\text{,}\) and concave up on
\(0 \lt x \lt 3\text{.}\)
(c)
A function
\(h(x)\) that is decreasing on
\(-3 \lt x \lt 3\text{,}\) concave up on
\(-3 \lt x \lt -1\text{,}\) neither concave up nor concave down on
\(-1 \lt x \lt 1\text{,}\) and concave down on
\(1 \lt x \lt 3\text{.}\)
(d)
A function
\(p(x)\) that is decreasing and concave down on
\(-3 \lt x \lt 0\) and is increasing and concave down on
\(0 \lt x \lt 3\text{.}\)
Activity 3.7.6 .
The following chart describes the values of
\(f(x)\) and its first and second derivatives at or between a few given values of
\(x\text{,}\) where
\(\nexists\) denotes that
\(f(x)\) does not exist at that value of
\(x\text{.}\)
\begin{equation*}
\begin{array}{c|cccccccccccccccccccc}
x
& & -8
& & -6
& & -3
& & 0
& & 2
& & 5
& & 8
& & 11
& & 13
\\\hline
f(x)
& & 3
& & 5
& & \nexists
& & -5
& & \nexists
& & 4
& & \nexists
& & -5
& & -3
\\
f'(x) &
+ & &
+ & &
- & &
- & &
- & &
- & &
+ & &
+ & &
+ & &
+
\\
f''(x) &
+ & &
- & &
- & &
+ & &
- & &
+ & &
+ & &
- & &
- & &
-
\\
\end{array}
\end{equation*}
Assume that
\(f(x)\) has vertical asymptotes at each
\(x\) -value where
\(f(x)\) does not exist, that
\(\displaystyle \lim_{x\to-\infty}f(x)= 1\text{,}\) and that
\(\displaystyle \lim_{x\to\infty}f(x)= -1\text{.}\)
(a)
List all the asymptotes of
\(f(x)\) and mark them on the graph.
Answer .
The asymptotes occur at
\(x = -3\text{,}\) \(x = 0\text{,}\) \(x = 2\text{,}\) and
\(x = 8\text{.}\)
(b)
Does
\(f(x)\) have any local maxima or local minima? If so, at what point(s)?
Answer .
There is a local maximum at
\(x = -6\) and a local minimum at
\(x=5\text{.}\)
(c)
Does
\(f(x)\) have any inflection points? If so, at what point(s)?
Answer .
There are inflection points at
\(x = -8\) and
\(x=0\text{.}\)
(d)
Use the information provided to sketch a reasonable graph of
\(f(x)\text{.}\) Watch changes in behavior due to changes in the sign of each derivative.
Activity 3.7.8 .
(a)
\(f(x)=x^4-4x^3+10\) Answer .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(b)
\(f(x)=\frac{x^2-4}{x^2-9}\) Answer .
Note that there is a horizontal asymptote at
\(y=1\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(c)
\(f(x)=x+2\cos x\) on the interval
\([0,2\pi]\)
Answer .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(d)
\(f(x)=\frac{x^2+x-2}{x+3}\) Answer .
Note that this graph has a slant asymptote of
\(y=x+2\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(e)
\(f(x)=\frac{x}{\sqrt{x^2+2}}\) Answer .
Note that this graph has horizontal asymptotes at
\(y=\pm 1\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(f)
\(f(x)=x^6+\frac{12}{5}x^5-12x^4+10\) Answer .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Subsection 3.7.2 Videos
No video is available for this learning outcome.
Subsection 3.7.3 Exercises