Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.7 Differentiating Implicitly Defined Functions (DF7)
Learning Outcomes
Compute derivatives of implicitly-defined functions.
Subsection 2.7.1 Activities
Activity 2.7.3 .
For this activity we want to find the equation of a tangent line for a circle with radius 5 centered at the origin,
\(x^2+y^2 = 25,\) at the point
\((-3,-4).\)
(a)
The derivative with respect to
\(x\) for the equation of the circle is given by which expression.
\(\displaystyle 2x + 2y\dfrac{dy}{dx} = 25\)
\(\displaystyle 2x + y\dfrac{dy}{dx} = 0\)
\(\displaystyle 2x + 2y\dfrac{dy}{dx} = 0\)
\(\displaystyle 2x + 2\dfrac{dy}{dx} = 25\)
(b)
Solving for
\(\dfrac{dy}{dx}\) gives?
\(\displaystyle \dfrac{dy}{dx} = \dfrac{25-2x}{2y}\)
\(\displaystyle \dfrac{dy}{dx} = -\dfrac{2x}{y}\)
\(\displaystyle \dfrac{dy}{dx} = -\dfrac{x}{y}\)
\(\displaystyle \dfrac{dy}{dx} = \dfrac{25-2x}{2}\)
(c)
Plug the point
\((-3,-4)\) into the expression found above for the derivative to get the slope of the tangent line.
Answer .
\(\dfrac{dy}{dx} = -\dfrac{3}{4}\)
(d)
Use the value for the slope of the tangent line to obtain the equation of the tangent line.
Answer .
\(y = -\dfrac{3}{4}x-\dfrac{25}{4}\)
Activity 2.7.4 .
The curve given in
FigureΒ 40 is an example of an astroid. The equation of this astroid is
\(x^{2/3} + y^{2/3} = 3^{2/3}\text{.}\) What is the derivative with respect
\(x\) for this astroid? (Solve for
\(\dfrac{dy}{dx}\) ).
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Figure 40. Graph of \(x^{2/3} + y^{2/3} = 3^{2/3}\text{.}\)
\(\displaystyle \frac{dy}{dx} = \frac{x^{-1/3}}{y^{-1/3}}\)
\(\displaystyle \frac{dy}{dx} = \frac{y^{-1/3}}{x^{-1/3}}\)
\(\displaystyle \frac{dy}{dx} = \frac{3^{-1/3}-x^{-1/3}}{y^{-1/3}}\)
\(\displaystyle \frac{dy}{dx} = -\frac{x^{-1/3}}{y^{-1/3}}\)
Activity 2.7.5 .
An example of a lemniscate is given in
FigureΒ 41 . The equation of this lemniscate is
\((x^{2} + y^{2})^2 = x^2 - y^2\text{.}\) What is the derivative with respect
\(x\) for this lemniscate? (Solve for
\(\dfrac{dy}{dx}\) ).
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Figure 41. Graph of \((x^{2} + y^{2})^2 = x^2 - y^2\text{.}\)
\(\displaystyle \frac{dy}{dx} = \frac{x(1-2(x^2+y^2))}{y+2(x^2+y^2)}\)
\(\displaystyle \frac{dy}{dx} = \frac{x(1-2(x^2+y^2))}{y(1+2(x^2+y^2))}\)
\(\displaystyle \frac{dy}{dx} = \frac{y(1+2(x^2+y^2))}{x(1-2(x^2+y^2))}\)
\(\displaystyle \frac{dy}{dx} = \frac{y+2(x^2+y^2)}{x(1-2(x^2+y^2))}\)
Activity 2.7.6 .
Explain how to use implicit differentiation to find
\(\dfrac{dy}{dx}\) for each of the following equations.
(a)
\begin{equation*}
-5 \, x^{5} - 5 \, \cos\left(y\right) = 3 \, y^{4} + 2
\end{equation*}
Answer .
\begin{equation*}
\frac{dy}{dx}=-d\frac{25 \, x^{4}}{12 \, y^{3} - 5 \, \sin\left(y\right)}
\end{equation*}
(b)
\begin{equation*}
-5 \, y e^{x} + 5 \, \sin\left(x\right) = 0
\end{equation*}
Answer .
\begin{equation*}
\frac{dy}{dx}=-{\left(y e^{x} - \cos\left(x\right)\right)} e^{\left(-x\right)}
\end{equation*}
Activity 2.7.7 .
To take the derivative of some explicit equations you might need to make it an implicit equation. For this activity we will find the derivative of \(y = x^x\text{.}\) Make the equation an implicit equation by taking natural logarithm of both sides, this gives \(\ln(y) = x\ln(x)\text{.}\) Knowing this, what is \(\dfrac{dy}{dx}\text{?}\) This process to find a derivative is known as logarithmic differentiation.
\(\displaystyle \dfrac{dy}{dx} = x^x(\ln(x) + 1)\)
\(\displaystyle \dfrac{dy}{dx} = \dfrac{(\ln(x)+1)}{x^x}\)
\(\displaystyle \dfrac{dy}{dx} = x^x(\ln(x) + x)\)
\(\displaystyle \dfrac{dy}{dx} = \dfrac{(\ln(x)+x)}{x^x}\)
Activity 2.7.8 .
Valerie is building a square chicken coop with side length
\(x\text{.}\) Because she needs a separate place for the rooster, she needs to put fence around the square and also along the diagonal line shown. The fence costs $20 per linear meter, and she has a budget of $900.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Figure 42. A diagram of the chicken coop.
(a)
Which of the following equations gives the relationship between \(x\) and \(y\text{?}\) Make sure you can explain why!
\(\displaystyle 20x + \frac{80x}{\cos(y)}=900\)
\(\displaystyle 80x + \frac{20x}{\cos(y)}=900\)
\(\displaystyle 80x + \frac{20x}{\sin(y)}=900\)
\(\displaystyle 20x + \frac{80x}{\sin(y)}=900\)
(b)
If Valerie builds the coop with
\(y=\pi/3\) (and wants to use her whole budget), find what side length
\(x\) she needs to use.
(c)
Find the slope of the curve at this point and interpret what this value tells Valerie.
Answer .
\(\dfrac{dy}{dx} = -\dfrac{2}{5\sqrt{3}}\) radians per meter. The angle for the diagonal fence is decreasing by about
\(13.2\) degrees per meter of side length.
Subsection 2.7.2 Videos
Figure 43. Video for DF7
Subsection 2.7.3 Exercises