Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.8 Differentiating Inverse Functions (DF8)
Learning Outcomes
Compute derivatives of inverse functions.
Subsection 2.8.1 Activities
Activity 2.8.2 .
In this activity you will use implicit differentiation and the inverse function identity in
RemarkΒ 2.8.1 to find the derivative of
\(y = \ln(x)\text{.}\)
(a)
Suppose that \(y=\ln(x)\text{.}\) Then we have that
\begin{equation*}
e^y = x\text{.}
\end{equation*}
Using implicit implicit differentiation, what do you get?
\(\displaystyle \frac{dy}{dx} = \frac{x}{y}\)
\(\displaystyle \frac{dy}{dx} = \frac{1}{e^x}\)
\(\displaystyle \frac{dy}{dx} = \frac{x}{e^y}\)
\(\displaystyle \frac{dy}{dx} = \frac{1}{e^y}\)
(b)
Notice that we started with the relationship
\(e^y=x\text{.}\) Use this to simplify
\(\dfrac{dy}{dx}\text{.}\) You should get that when
\(y=\ln(x)\) we have that
\(\dfrac{dy}{dx}
= \dfrac{1}{x}\text{...}\) as expected!
Answer .
If
\(y = \ln x\text{,}\) we have
\(\dfrac{dy}{dx} = \dfrac{1}{e^{\ln x}} =
\dfrac{1}{x}\text{.}\)
Activity 2.8.3 .
In this activity we will try to find a general formula for the derivative of the inverse function. Let
\(g\) be the inverse function of
\(f\text{.}\) We have also used the notation
\(f^{-1}\) before, but for the purpose of this problem, let us use
\(g\) to avoid too many superscripts. We can express the relationship β
\(g\) is the inverse of
\(f\) β with the equation from
RemarkΒ 2.8.1
\begin{equation*}
f(g(x))=x.
\end{equation*}
(a)
Looking at the equation \(f(g(x))=x\text{,}\) what is the derivative with respect to \(x\) of the right hand side of the equation?
(b)
Looking at the equation \(f(g(x))=x\text{,}\) what is the derivative with respect to \(x\) of the left hand side of the equation?
\(\displaystyle f'(g(x))\)
\(\displaystyle f'(g'(x))\)
\(\displaystyle f(g(x))\, g'(x) \)
\(\displaystyle f'(g(x))\, g'(x)\)
(c)
Setting the two sides of the equation equal after differentiating, we can solve for \(g'(x)\text{.}\) What do you get?
\(\displaystyle g'(x) = \frac{x}{f(g(x))}\)
\(\displaystyle g'(x) = \frac{x}{f'(g(x))}\)
\(\displaystyle g'(x) = \frac{1}{f(g(x))}\)
\(\displaystyle g'(x) = \frac{1}{f'(g(x))}\)
Activity 2.8.5 .
In this problem you will apply the general formula for the derivative of the inverse function to find the values of some derivatives graphically.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Figure 44. The graphs of \(f(x)\) and \(f'(x)\text{.}\)
(a)
The derivative of the inverse function at \(x=12\) given by \((f^{-1})' (12)
= \dfrac{1}{f'(f^{-1}(12))}\text{.}\) Using the graphs, what is your best approximation for this quantity?
\(\displaystyle (f^{-1})' (12)\approx \frac{1}{0.2} = 5 \)
\(\displaystyle (f^{-1})' (12) \approx \frac{1}{0.6} \approx 1.67 \)
\(\displaystyle (f^{-1})' (12) \approx \frac{1}{0.4} = 2.5 \)
\(\displaystyle (f^{-1})' (12) \approx \frac{1}{0.1} = 10 \)
(b)
What is your best estimate for \((f^{-1})' (6)\text{?}\)
\(\displaystyle (f^{-1})' (6) \approx \frac{1}{0.2} = 5 \)
\(\displaystyle (f^{-1})' (6) \approx \frac{1}{0.6} \approx 1.67 \)
\(\displaystyle (f^{-1})' (6) \approx \frac{1}{0.4} = 2.5 \)
\(\displaystyle (f^{-1})' (6) \approx \frac{1}{0.1} = 10 \)
Activity 2.8.6 .
Use the general formula for the derivative of the inverse function from
RemarkΒ 2.8.4 to find...
(a)
The derivative of the inverse function of
\(f(x) = e^x\text{...}\) This should match the result of
ActivityΒ 2.8.2 !
(b)
The derivative of the inverse function of
\(f(x) = \dfrac{1}{x}\text{...}\) This should match a derivative that you have seen before! See if you can explain why.
Answer .
\(f'(x) = -\dfrac{1}{x^2}\)
Definition 2.8.7 .
We can only invert the function
\(y=\sin(x)\) on the restricted domain
\([-\pi/2,\pi/2]\) (Why?). On this domain we define arcsine by the condition
\begin{equation*}
x = \sin^{-1}(y) \quad \text{ when } \quad y=\sin(x).
\end{equation*}
Activity 2.8.8 .
In this activity you will study the arcsine function.
(a)
Consider the values of
\(y=\sin(x)\) given in the table below for an angle
\(x\) between
\(-\pi/2\) and
\(\pi/2\text{.}\) Fill in the corresponding values for the inverse function arcsine
\(x = \sin^{-1}(y)\text{.}\) In other words, you need to provide the angle in
\([-\pi/2, \pi/2]\) whose sine value is given. You can use the unit circle to help you remember which angles yield the given values of sine. The first entry is provided: a sine value of
\(-1\) corresponds to the angle
\(-\pi/2\text{.}\)
Table 45.
\(y = \sin(x) \)
\(-1\)
\(-\sqrt{3}/2\)
\(-1/2\)
\(0\)
\(1/2\)
\(\sqrt{3}/2\)
\(1\)
\(x = \sin^{-1}(y)\)
\(-\pi/2\)
Answer .
\(y = \sin(x) \)
\(-1\)
\(-\sqrt{3}/2\)
\(-1/2\)
\(0\)
\(1/2\)
\(\sqrt{3}/2\)
\(1\)
\(x = \sin^{-1}(y)\)
\(-\pi/2\)
\(-\pi/3\)
\(-\pi/6\)
\(0\)
\(\pi/6\)
\(\pi/3\)
\(\pi/2\)
(b)
From the graph of
\(y=\sin(x)\) and your table above, graph the arcsine function
\(y=\sin^{-1}(x)\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Figure 46. The graphs of \(\sin(x)\) and a blank graph for \(\sin^{-1}(x)\text{.}\) Answer .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(c)
Letβs now work with the function arccosine. Again, we need to restrict the domain of cosine to be able to invert the function (Why?). The convention is to restrict cosine to the domain
\([0,\pi]\) in order to define arccosine. Given this restriction, what are the domain and range of arccosine? Create a table of values and graph the function arccosine.
Answer .
\(y = \cos(x) \)
\(1\)
\(\sqrt{3}/2\)
\(1/2\)
\(0\)
\(-1/2\)
\(-\sqrt{3}/2\)
\(-1\)
\(x = \cos^{-1}(y)\)
\(0\)
\(\pi/6\)
\(\pi/3\)
\(\pi/2\)
\(2\pi/3\)
\(5\pi/6\)
\(\pi\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(d)
Letβs now work with the function arctangent. Again, we need to restrict the domain of tangent to be able to invert the function (Why?). The convention is to restrict tangent to the domain
\((-\pi/2,\pi/2)\) in order to define arctangent. Given this restriction, what are the domain and range of arctangent? Create a table of values and graph the function arctangent.
Answer .
\(y = \tan(x) \)
Und
\(-\sqrt{3}\)
\(-1/\sqrt{3}\)
\(0\)
\(1/\sqrt{3}\)
\(\sqrt{3}\)
Und
\(x = \tan^{-1}(y)\)
\(-\pi/2\)
\(-\pi/3\)
\(-\pi/6\)
\(0\)
\(\pi/6\)
\(\pi/3\)
\(\pi/2\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Activity 2.8.9 .
In this activity you will find a formula for the derivative of arctangent.
(a)
Differentiate the implicit equation \(\tan(y) = x\text{,}\) what do you get for \(\dfrac{dy}{dx}\text{?}\)
\(\displaystyle \dfrac{dy}{dx} = \dfrac{x}{\tan(y)}\)
\(\displaystyle \dfrac{dy}{dx} = \dfrac{1}{\tan(y)}\)
\(\displaystyle \dfrac{dy}{dx} = \dfrac{x}{\sec^2(y)}\)
\(\displaystyle \dfrac{dy}{dx} = \dfrac{1}{\sec^2(y)}\)
(b)
For what function
\(y=g(x)\) have you found the derivative
\(\dfrac{dy}{dx}\) ?
(c)
Use the fact that
\(\sec^2(y) = 1 + \tan^2(y)\) and that
\(\tan(y)=x\) to get a nice formula for the derivative of the arctangent function of
\(x\text{.}\)
Activity 2.8.11 .
Demonstrate and explain how to find the derivative of the following functions. Be sure to explicitly denote which derivative rules (product, quotient, sum and difference, etc.) you are using in your work.
\begin{equation*}
k(t)= \dfrac{\arctan\left(-4 \, t\right)}{\ln\left(-4 \, t\right)}
\end{equation*}
\begin{equation*}
j(u)= -5 \, \arcsin\left(u\right) \log\left(u^{6} + 2\right)
\end{equation*}
\begin{equation*}
n(x)= \ln\left(-\arcsin\left(x\right) + 4 \, \arctan\left(x\right)\right)
\end{equation*}
Answer .
\begin{equation*}
k' (t)= -\frac{\arctan\left(-4 \, t\right)}{t \log\left(-4 \, t\right)^{2}} - \frac{4}{{\left(16 \, t^{2} + 1\right)} \log\left(-4 \, t\right)}
\end{equation*}
\begin{equation*}
j' (u)= -\frac{30 \, u^{5} \arcsin\left(u\right)}{u^{6} + 2} - \frac{5 \, \log\left(u^{6} + 2\right)}{\sqrt{-u^{2} + 1}}
\end{equation*}
\begin{equation*}
n' (x)= \frac{\frac{1}{\sqrt{-x^{2} + 1}} - \frac{4}{x^{2} + 1}}{\arcsin\left(x\right) - 4 \, \arctan\left(x\right)}
\end{equation*}
Activity 2.8.12 .
(a)
Find the equation of the tangent line to
\(y=\tan^{-1}(x)\) at
\(x=0\text{.}\) Draw the function and the tangent on a graphing calculator to check your work!
(b)
Find the equation of the tangent line to
\(y=\sin^{-1}(x)\) at
\(x=0.5\text{.}\) Draw the function and the tangent on a graphing calculator to check your work!
Answer .
\(y = \dfrac{2}{\sqrt{3}}x - \dfrac{1}{\sqrt{3}}+ \dfrac{\pi}{6}\)
(c)
Find the equation of the tangent line to
\(y=\cos^{-1}(x)\) at
\(x=-0.5\text{.}\) Draw the function and the tangent on a graphing calculator to check your work!
Answer .
\(y = -\dfrac{2}{\sqrt{3}}x - \dfrac{1}{\sqrt{3}}+ \dfrac{2\pi}{3}\)
Activity 2.8.13 .
Let
\(y=f(v)\) be the gas consumption (in ml/km) of a car at velocity
\(v\) (in km/hr). We use the notation: ml for milliliters, km for kilometers, and hr for hours. Also consider the function
\(g(y)\text{,}\) where
\(v=g(y)\) is the function that gives the velocity
\(v\) (in km/hr) when the gas consumption is
\(y\) (in ml/km). You are given the graphs of
\(f(v), f'(v)\) below.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Figure 47. The graphs of \(f(v)\) and \(f'(v)\text{.}\)
(a)
Estimate
\(f^{-1}(6)\text{.}\) What does this value mean in the context of the problem?
Answer .
\(f^{-1}(6)\approx 46\text{.}\) This means that when the gas consumption is 6 ml/km, the velocity is 46 km/hr.
(b)
Using your answer from part (a), estimate the derivative of the inverse function of
\(f(x)\) at
\(x=6\) i.e., compute
\((f^{-1})'(6)\text{.}\)
Answer .
\((f^{-1})'(6) \approx 2.86\)
(c)
What is the relationship between the functions
\(f\) and
\(g\text{?}\)
(d)
Use the relationship between the functions
\(f\) and
\(g\) to estimate
\(g(12)\) and
\(g'(12)\text{.}\) What do these values mean in the context of the problem?
Answer .
\(g(12) = f^{-1}(12)\approx 60\text{,}\) so that when the gas consumption is 12 ml/km, the velocity is 60 km/hr
\(g'(12) = (f^{-1})'(12)\approx 1.67\text{,}\) so that when gas consumption is at 12 ml/km, the velocity is changing by 1.67 km/hr per ml/km.
Subsection 2.8.2 Videos
Figure 48. Video for DF8
Subsection 2.8.3 Exercises