Skip to main content
Logo image

Section 6.5 Density, Mass, and Center of Mass (AI5)

Subsection 6.5.1 Activities

Activity 6.5.1.

Consider a rectangular prism with a 10 meters \(\times\) 10 meters square base and height 20 meters. Suppose the density of the material in the prism increases with height, following the function \(\delta(h)=10+h\) kg/m\(^3\text{,}\) where \(h\) is the height in meters.
(a)
If one were to cut this prism, parallel to the base, into 4 pieces with height 5 meters, what would the volume of each piece be?
(b)
Consider the piece sitting on top of the slice made at height \(h=5\text{.}\) Using a density of \(\delta(5)=15\) kg/m\(^3\text{,}\) and the volume you found in (a), estimate the mass of this piece.
  1. \(500\cdot 5=2500\) kg
  2. \(500\cdot 15=7500\) kg
  3. \(500\cdot 15\cdot 5=37500\) kg

Activity 6.5.2.

Consider all 4 slices from ActivityΒ 6.5.1.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
\(10\times 10\times 20\) prism sliced into 4 pieces.
(a)
Fill out the following table.
\begin{equation*} \begin{array}{|c|c|c|c|} \hline h_i & \delta(h_i) & \text{Volume} & \text{Estimated Mass}\\ \hline h_4=15\ \text{m} & \delta(15)=25\ \text{kg/m}^3 & 500\ \text{m}^3 & \\ \hline h_3=10\ \text{m} & \delta(10)=20\ \text{kg/m}^3 & 500\ \text{m}^3 & \\ \hline h_2=5\ \text{m} & \delta(5)=15\ \text{kg/m}^3 & 500\ \text{m}^3 & 7500\ \text{kg}\\ \hline h_1=0\ \text{m} & \delta(0)=10\ \text{kg/m}^3 & 500\ \text{m}^3 & \\ \hline \end{array} \end{equation*}

Activity 6.5.3.

Suppose instead that we sliced the prism from ActivityΒ 6.5.1 into 5 pieces of height 4 meters.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
\(10\times 10\times 20\) prism sliced into 5 pieces.
(a)
Fill out the following table.
\begin{equation*} \begin{array}{|c|c|c|c|} \hline h_i & \delta(h_i) & \text{Volume} & \text{Estimated Mass}\\ \hline h_5=16\ \text{m} & \delta(16)=26\ \text{kg/m}^3 & 400\ \text{m}^3 & \\ \hline h_4=12\ \text{m} & \delta(12)=22\ \text{kg/m}^3 & 400\ \text{m}^3 & \\ \hline h_3=8\ \text{m} & \delta(8)=18\ \text{kg/m}^3 & 400\ \text{m}^3 & \\ \hline h_2=4\ \text{m} & \delta(4)=14\ \text{kg/m}^3 & 400\ \text{m}^3 & \phantom{7500\ \text{kg}}\\ \hline h_1=0\ \text{m} & \delta(0)=10\ \text{kg/m}^3 & 400\ \text{m}^3 & \\ \hline \end{array} \end{equation*}

Activity 6.5.5.

Suppose now that we slice the prism from ActivityΒ 6.5.1 into slices of height \(\Delta h\) meters.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
\(10\times 10\times 20\) prism sliced into many pieces.
(a)
Consider the piece sitting atop the slice made at height \(h_i\text{.}\) Using \(\delta(h_i)=10+h_i\) as the estimate for the density of this piece, what is the mass of this piece?
  1. \(\displaystyle (10+h)100\cdot h_i\)
  2. \(\displaystyle (10+\Delta h)100\cdot h_i\)
  3. \(\displaystyle (10+h_i)100\cdot \Delta h\)
  4. \(\displaystyle (10+h_i)100\cdot h\)

Activity 6.5.6.

Consider a cylindrical cone with a base radius of 15 inches and a height of 60 inches. Suppose the density of the cone is \(\delta(h)= 15+\sqrt{h}\) oz/in\(^3\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(a)
Let \(r_2\) be the radius of the circular cross section of the cone, made at height 30 inches. Recall that \(\Delta ABC, \Delta AB'C'\) are similar triangles, what is \(r_2\text{?}\)
  1. 15 inches.
  2. 7.5 inches.
  3. 30 inches.
  4. 60 inches.
(b)
What is the volume of a cylinder with radius \(r_1=15\) inches and height \(30\) inches?
(c)
What is the volume of a cylinder with radius \(r_2\) inches and height \(30\) inches?

Activity 6.5.7.

Suppose that we estimate the mass of the cone from ActivityΒ 6.5.6 with 2 cylinders of height 30 inches.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(a)
Fill out the following table.
\begin{equation*} \begin{array}{|c|c|c|c|} \hline h_i & \delta(h_i) & \text{Volume} & \text{Estimated Mass}\\ \hline h_2=30\ \text{in} & \delta(30)=15+\sqrt{30}\ \text{oz/in}^3 & \pi(7.5)^2\cdot30\ \text{in}^3 & \phantom{6500\ \text{kg}}\\ \hline h_1=0\ \text{in} & \delta(0)=15\ \text{oz/in}^3 & \pi(15)^2\cdot30\ \text{in}^3 & \\ \hline \end{array} \end{equation*}

Activity 6.5.8.

Suppose that we estimate the mass of the cone from ActivityΒ 6.5.6 with 3 cylinders of height 20 inches.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(a)
Fill out the following table.
\begin{equation*} \begin{array}{|c|c|c|c|} \hline h_i & \delta(h_i) & \text{Volume} & \text{Estimated Mass}\\ \hline h_2=40\ \text{in} & \delta(40)=15+\sqrt{40}\ \text{oz/in}^3 & \pi(5)^2\cdot20\ \text{in}^3 & \phantom{6500\ \text{kg}}\\ \hline h_2=20\ \text{in} & \delta(20)=15+\sqrt{20}\ \text{oz/in}^3 & \pi(10)^2\cdot20\ \text{in}^3 & \phantom{6500\ \text{kg}}\\ \hline h_1=0\ \text{in} & \delta(0)=15\ \text{oz/in}^3 & \pi(15)^2\cdot20\ \text{in}^3 & \\ \hline \end{array} \end{equation*}

Activity 6.5.9.

Suppose that we estimate the mass of the cone from ActivityΒ 6.5.6 with cylinders of height \(\Delta h\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(a)
Consider the piece sitting atop the slice made at height \(h_i\text{.}\) Using \(\delta(h_i)=15+\sqrt{h_i}\) as the estimate for the density of this cylinder, what is the mass of this cylinder?
  1. \(\displaystyle (15+\sqrt{h})\pi r_i^2\cdot \Delta h\)
  2. \(\displaystyle (15+\sqrt{h_i})\pi r_i^2\cdot \Delta h\)
  3. \(\displaystyle (15+\Delta h)\pi r_i^2\cdot \Delta h_i\)
  4. \(\displaystyle (15+\sqrt{h_i})\pi r^2\cdot \Delta h\)

Activity 6.5.10.

Consider a solid where the cross section of the solid at \(x=x_i\) has area \(A(x_i)\text{,}\) and the density when \(x=x_i\) is \(\delta(x_i)\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(a)
If we used prisms of width \(\Delta x\) to approximate this solid, what is the mass of the slice associated with \(x_i?\)
  1. \(\displaystyle A(x)\delta(x)\Delta x\)
  2. \(\displaystyle \pi A(x)^2\delta(x_i)\Delta x\)
  3. \(\displaystyle A(x_i)\delta(x_i)\Delta x\)
  4. \(\displaystyle A(x_i)\delta(x_i)\Delta x_i\)

Activity 6.5.12.

Consider that for the prism from ActivityΒ 6.5.1, a cross section of height \(h\) is \(A(h)=10^2=100\) m\(^2\text{.}\) Also recall that the density of the prism is \(\delta(h)=10+h\) kg/m\(^3\text{,}\) where \(h\) is the height in meters.
Use FactΒ 6.5.11 to find the mass of the prism.

Activity 6.5.13.

Consider that for the cone from ActivityΒ 6.5.6, a cross section of height \(h\) is \(A(h)=\pi r^2\) in\(^2\text{,}\) where \(r\) is the radius of the circular cross-section at height \(h\) inches. Also recall that the density of the cone is \(\delta(h)=15+\sqrt{h}\) oz/in\(^3\text{,}\) where \(h\) is the height in inches.
(b)
Find \(A(h)\) as a function of \(h\) using this information.

Activity 6.5.15.

Consider a board sitting atop the \(x\)-axis with six \(1\times 1\) blocks each weighing 1 kg placed upon it in the following way: two blocks are atop the 1, three blocks are atop the 2, and one block is atop the 6.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
Which of the following describes the \(x\)-value of the center of gravity of the board with the blocks?
  1. \(\displaystyle\frac{1+6}{2}=3.5\text{.}\)
  2. \(\displaystyle\frac{1+2+6}{3}=3\text{.}\)
  3. \(\displaystyle\frac{2\cdot1+3\cdot2+1\cdot6}{6}\approx 2.3333\text{.}\)

Activity 6.5.16.

Consider a board sitting atop the \(x\)-axis with six \(1\times 1\) blocks each weighing 1 kg placed upon it in the following way: two blocks are atop the 1, three blocks are atop the 2, and one block is atop the 8.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
Find the \(x\)-value of the center of gravity of the board with the blocks.

Activity 6.5.18.

Consider that for the prism from ActivityΒ 6.5.12, a cross section of height \(h\) is \(A(h)=10^2=100\) m\(^2\text{.}\) Also recall that the density of the prism is \(\delta(h)=10+h\) kg/m\(^3\text{,}\) where \(h\) is the height in meters, and that we found the total mass to be 40000 kg.
Use FactΒ 6.5.17 to find the height where the center of mass occurs.

Activity 6.5.19.

Consider that for the prism from ActivityΒ 6.5.13, a cross section of height \(h\) is \(A(h)=\pi\cdot \left( \frac{60-h}{4}\right)^2\) in\(^2\text{.}\) Also recall that the density of the cone is \(\delta(h)=15+\sqrt{h}\) oz/in\(^3\text{,}\) where \(h\) is the height in inches, and that we found the total mass to be about 142492.6 oz.
Use FactΒ 6.5.17 to find the height where the center of mass occurs.

Activity 6.5.20.

Consider that for the pyramid from ActivityΒ 6.5.14, a cross section of height \(h\) is \(A(h)=\pi\cdot \left( \frac{16-h}{2}\right)^2\) ft\(^2\text{.}\) Also recall that the density of the pyramid is \(\delta(h)=10+\cos{\pi h}\) lb/feet\(^3\text{,}\) where \(h\) is the height in feet, and that we found the total mass to be about 3414.14.6 lb.
Use FactΒ 6.5.17 to find the height where the center of mass occurs.

Subsection 6.5.2 Videos

Figure 94. Video: Set up integrals to solve problems involving density, mass, and center of mass

Subsection 6.5.3 Exercises