Skip to main content
Logo image

Section 8.6 Comparison Tests (SQ6)

Subsection 8.6.1 Activities

Activity 8.6.1.

Let \(\{a_n\}_{n=1}^\infty\) be a sequence, with infinite series \(\displaystyle \sum_{n=1}^\infty a_n=a_1+a_2+\cdots \text{.}\) Suppose \(\{b_n\}_{n=1}^\infty\) is a sequence where each \(b_n=3a_n\text{,}\) with infinite series \(\displaystyle \sum_{n=1}^\infty b_n=\sum_{n=1}^\infty 3a_n=3a_1+3a_2+\cdots \text{.}\)
(a)
If \(\displaystyle \sum_{n=1}^\infty a_n=5\) what can be said about \(\displaystyle\sum_{n=1}^\infty b_n\text{?}\)
  1. \(\displaystyle\sum_{n=1}^\infty b_n\) converges but the value cannot be determined.
  2. \(\displaystyle\sum_{n=1}^\infty b_n\) converges to \(3\cdot 5=15\text{.}\)
  3. \(\displaystyle\sum_{n=1}^\infty b_n\) converges to some value other than 15.
  4. \(\displaystyle\sum_{n=1}^\infty b_n\) diverges.
  5. It cannot be determined whether \(\displaystyle\sum_{n=1}^\infty b_n\) converges or diverges.
(b)
If \(\displaystyle \sum_{n=1}^\infty a_n\) diverges, what can be said about \(\displaystyle\sum_{n=1}^\infty b_n\text{?}\)
  1. \(\displaystyle\sum_{n=1}^\infty b_n\) converges but the value cannot be determined.
  2. \(\displaystyle\sum_{n=1}^\infty b_n\) converges and the value can be determined.
  3. \(\displaystyle\sum_{n=1}^\infty b_n\) diverges.
  4. It cannot be determined whether \(\displaystyle\sum_{n=1}^\infty b_n\) converges or diverges.

Activity 8.6.3.

Using Fact 8.4.2, we know the geometric series
\begin{equation*} \displaystyle \sum_{n=0}^\infty \frac{1}{2^n}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^n}+\cdots=\frac{1}{1-\frac{1}{2}}=2. \end{equation*}
(a)
What can we say about the series
\begin{equation*} \displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots? \end{equation*}
  1. \(\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots\) converges to \(3\cdot 2=6\text{.}\)
  2. \(\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots\) converges to some value other than 6.
  3. \(\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots\) diverges.
(b)
What do you think we can say about the series
\begin{equation*} \displaystyle \frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots? \end{equation*}
  1. \(\displaystyle 3+\frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots\) converges to \(3\cdot 2=6\text{.}\)
  2. \(\displaystyle 3+\frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots\) converges to some value other than 6.
  3. \(\displaystyle 3+\frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots\) diverges.

Activity 8.6.4.

From Fact 8.4.2, we know
\begin{equation*} \displaystyle 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\cdots \end{equation*}
diverges.
(a)
What can we say about the series
\begin{equation*} \displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots? \end{equation*}
  1. \(\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots\) converges to a known value we can compute.
  2. \(\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots\) converges to some unknown value.
  3. \(\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots\) diverges.
(b)
What do you think we can say about the series
\begin{equation*} \displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots? \end{equation*}
  1. \(\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots\) converges to a known value we can compute.
  2. \(\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots\) converges to some unknown value.
  3. \(\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots\) diverges.

Activity 8.6.6.

Recall that
\begin{equation*} \displaystyle \sum_{n=1}^\infty \frac{1}{2^n} \end{equation*}
converges.
(e)
Let \(\displaystyle\sum a_n\) and \(\displaystyle\sum b_n\) be series with positive terms. If
\begin{equation*} \lim_{n \to \infty} \frac{b_n}{a_n} \end{equation*}
diverges, can we conclude that \(\displaystyle \sum b_n\) converges or diverges?

Activity 8.6.7.

We wish to determine if \(\displaystyle \sum_{n=1}^\infty \frac{1}{4^n-1}\) converges or diverges using Fact 8.6.5.
(a)
Compute
\begin{equation*} \displaystyle\lim_{n\to\infty}\frac{\frac{1}{4^n-1}}{\frac{1}{4^n}}. \end{equation*}
(c)
Does \(\displaystyle \sum_{n=1}^\infty \frac{1}{4^n-1}\) converge or diverge?

Activity 8.6.8.

We wish to determine if \(\displaystyle \sum_{n=2}^\infty \frac{2}{\sqrt{n+3}}\) converges or diverges using Fact 8.6.5.
(a)
To which of the following should we compare \(\displaystyle \{a_n\}=\left\{\frac{2}{\sqrt{n+3}}\right\}\text{?}\)
  1. \(\displaystyle \left\{\frac{1}{n}\right\}\text{.}\)
  2. \(\displaystyle \left\{\frac{1}{\sqrt{n}}\right\}\text{.}\)
  3. \(\displaystyle \left\{\frac{1}{n^2}\right\}\text{.}\)
  4. \(\displaystyle \left\{\frac{1}{2^n}\right\}\text{.}\)
(d)
What is true about \(\displaystyle \lim_{n\to\infty} \frac{b_n}{a_n}\) and \(\displaystyle \lim_{n\to\infty} \frac{a_n}{b_n}\text{?}\)
  1. Their values are reciprocals.
  2. Their values negative reciprocals.
  3. They are both positive finite constants.
  4. Only one value is a finite positive constant.
  5. One value is \(0\) and the other value is infinite.
(e)
Does the series \(\displaystyle \sum_{n=2}^\infty \frac{1}{\sqrt{n}}\) converge or diverge?

Activity 8.6.9.

We wish to determine if \(\displaystyle \sum_{n=1}^\infty \frac{3}{n^2+8n+5}\) converges or diverges using Fact 8.6.5.
(a)
To which of the following should we compare \(\displaystyle \{x_n\}=\left\{\frac{3}{n^2+8n+5} \right\}\text{?}\)
  1. \(\displaystyle \left\{\frac{1}{n}\right\}\text{.}\)
  2. \(\displaystyle \left\{\frac{1}{\sqrt{n}}\right\}\text{.}\)
  3. \(\displaystyle \left\{\frac{1}{n^2}\right\}\text{.}\)
  4. \(\displaystyle \left\{\frac{1}{2^n}\right\}\text{.}\)

Activity 8.6.11.

Consider sequences \(\{a_n\}, \{b_n\}\) where \(a_n\geq b_n\geq 0\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
Plots of sequences \(\{a_n\}, \{b_n\}\) where \(a_n\geq b_n\geq 0\text{.}\)
(a)
Suppose that \(\displaystyle \sum_{n=0}^\infty a_n\) converges. What could be said about \(\{b_n\}\text{?}\)
  1. \(\displaystyle \sum_{n=0}^\infty b_n\) converges.
  2. \(\displaystyle \sum_{n=0}^\infty b_n\) diverges.
  3. Whether or not \(\displaystyle \sum_{n=0}^\infty b_n\) converges or diverges cannot be determined with this information.
(b)
Suppose that \(\displaystyle \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty \frac{1}{n+1}\) which diverges. Which of the following statements are true?
  1. \(\displaystyle 0\leq \frac{1}{2n^2} \leq \frac{1}{n+1}\) for each \(n \geq 1\) and \(\displaystyle \sum_{n=1}^\infty \frac{1}{2n^2}\) is a convergent \(p\)-series where \(p=2\text{.}\)
  2. \(\displaystyle 0\leq \frac{1}{2n}\leq \frac{1}{n+1}\) for each \(n \geq 1\) and \(\displaystyle \sum_{n=1}^\infty \frac{1}{2n}\) is a divergent \(p\)-series where \(p=1\text{.}\)
(c)
Suppose that \(\displaystyle \sum_{n=0}^\infty a_n\) was some series that diverges. What could be said about \(\{b_n\}\text{?}\)
  1. \(\displaystyle \sum_{n=0}^\infty b_n\) converges.
  2. \(\displaystyle \sum_{n=0}^\infty b_n\) diverges.
  3. Whether or not \(\displaystyle \sum_{n=0}^\infty b_n\) converges or diverges cannot be determined with this information.
(d)
Suppose that \(\displaystyle \sum_{n=0}^\infty b_n\) diverges. What could be said about \(\{a_n\}\text{?}\)
  1. \(\displaystyle \sum_{n=0}^\infty a_n\) converges.
  2. \(\displaystyle \sum_{n=0}^\infty a_n\) diverges.
  3. Whether or not \(\displaystyle \sum_{n=0}^\infty a_n\) converges or diverges cannot be determined with this information.
(e)
Suppose that \(\displaystyle \sum_{n=0}^\infty b_n=\sum_{n=0}^\infty \frac{1}{3^n}\) which converges. Which of the following statements are true?
  1. \(\displaystyle 0\leq \frac{1}{3^n} \leq \frac{1}{2^n}\) for each \(n\) and \(\displaystyle \sum_{n=0}^\infty \frac{1}{2^n}\) is a convergent geometric series where \(\displaystyle |r|=\frac{1}{2} \lt 1\text{.}\)
  2. \(\displaystyle 0\leq \frac{1}{3^n} \leq 1\) for each \(n\) and \(\displaystyle \sum_{n=0}^\infty 1\) diverges by the Divergence Test.
(f)
Suppose that \(\displaystyle \sum_{n=0}^\infty b_n\) was some series that converges. What could be said about \(\{a_n\}\text{?}\)
  1. \(\displaystyle \sum_{n=0}^\infty a_n\) converges.
  2. \(\displaystyle \sum_{n=0}^\infty a_n\) diverges.
  3. Whether or not \(\displaystyle \sum_{n=0}^\infty a_n\) converges or diverges cannot be determined with this information.

Activity 8.6.13.

Suppose that you were handed positive sequences \(\{a_n\}, \{b_n\}\text{.}\) For the first few values \(a_n\geq b_n\text{,}\) but after that what happens is unclear until \(n=100\text{.}\) Then for any \(n\geq 100\) we have that \(a_n \leq b_n\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
Plots of sequences \(\{a_n\}, \{b_n\}\) where \(a_n\geq b_n\geq 0\) initially but eventually \(a_n\leq b_n\geq 0\text{.}\)
(a)
How might we best utilize Fact 8.6.12 to determine the convergence of \(\displaystyle \sum_{n=0}^\infty a_n\) or \(\displaystyle \sum_{n=0}^\infty b_n\text{?}\)
  1. Since \(a_n\) is sometimes greater than, and sometimes less than \(b_n\text{,}\) there is no way to utilize Fact 8.6.12.
  2. Since initially, we have \(b_n\leq a_n\text{,}\) we can utilize Fact 8.6.12 by assuming \(a_n\geq b_n\text{.}\)
  3. Since we can rewrite \(\displaystyle \sum_{n=0}^\infty a_n=\sum_{n=0}^{99} a_n+\sum_{n=100}^\infty a_n\) and \(\displaystyle \sum_{n=0}^\infty b_n=\sum_{n=0}^{99} b_n+\sum_{n=100}^\infty b_n\) and \(\displaystyle \sum_{n=0}^{99} a_n, \sum_{n=0}^{99} b_n\) are necessarily finite, we can compare \(\displaystyle \sum_{n=100}^\infty a_n, \sum_{n=100}^\infty b_n\) with Fact 8.6.12.

Activity 8.6.15.

Suppose we wish to determine if \(\displaystyle \sum_{n=1}^\infty \frac{1}{2n+3}\) converged using Fact 8.6.14.
(b)
For which value \(k\) is \(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k\text{?}\)
  1. \(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=0\text{.}\)
  2. \(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=1\text{.}\)
  3. \(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=2\text{.}\)
  4. \(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=3\text{.}\)
  5. There is no \(k\) for which \(\displaystyle \frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k\text{.}\)
(c)
Use Fact 8.6.14 and compare \(\displaystyle \sum_{n=1}^\infty \frac{1}{2n+3}\) to \(\displaystyle \sum_{n=1}^\infty \frac{1}{3n}\) to determine if \(\displaystyle \sum_{n=1}^\infty \frac{1}{2n+3}\) converges or diverges.

Activity 8.6.16.

Suppose we wish to determine if \(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+5}\) converged using Fact 8.6.14.
(a)
Which series should we compare \(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+5}\) to best utilize Fact 8.6.14?
  1. \(\displaystyle\sum_{n=1}^\infty \frac{1}{n}\text{.}\)
  2. \(\displaystyle\sum_{n=1}^\infty \frac{1}{n^2}\text{.}\)
  3. \(\displaystyle\sum_{n=1}^\infty \frac{1}{2^n}\text{.}\)
  4. \(\displaystyle\sum_{n=1}^\infty \frac{1}{n+5}\text{.}\)
  5. \(\displaystyle\sum_{n=1}^\infty \frac{1}{n^2+5}\text{.}\)
  6. \(\displaystyle\sum_{n=1}^\infty \frac{1}{2^n+5}\text{.}\)

Activity 8.6.17.

For each of the following series, determine if it converges or diverges, and explain your choice.
(a)
\(\displaystyle \sum_{n= 4 }^\infty \frac{3}{\log\left(n\right) + 2}.\)
(b)
\(\displaystyle \sum_{n= 3 }^\infty \frac{1}{n^{2} + 2 \, n + 1}.\)

Subsection 8.6.2 Videos

Figure 116. Video: Use the direct comparison and limit comparison tests to determine if a series converges or diverges

Subsection 8.6.3 Exercises