Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 8.6 Comparison Tests (SQ6)
Learning Outcomes
Use the direct comparison and limit comparison tests to determine if a series converges or diverges.
Subsection 8.6.1 Activities
Activity 8.6.1 .
Let
\(\{a_n\}_{n=1}^\infty\) be a sequence, with infinite series
\(\displaystyle \sum_{n=1}^\infty a_n=a_1+a_2+\cdots \text{.}\) Suppose
\(\{b_n\}_{n=1}^\infty\) is a sequence where each
\(b_n=3a_n\text{,}\) with infinite series
\(\displaystyle \sum_{n=1}^\infty b_n=\sum_{n=1}^\infty 3a_n=3a_1+3a_2+\cdots \text{.}\)
(a)
If \(\displaystyle \sum_{n=1}^\infty a_n=5\) what can be said about \(\displaystyle\sum_{n=1}^\infty b_n\text{?}\)
\(\displaystyle\sum_{n=1}^\infty b_n\) converges but the value cannot be determined.
\(\displaystyle\sum_{n=1}^\infty b_n\) converges to \(3\cdot 5=15\text{.}\)
\(\displaystyle\sum_{n=1}^\infty b_n\) converges to some value other than 15.
\(\displaystyle\sum_{n=1}^\infty b_n\) diverges.
It cannot be determined whether \(\displaystyle\sum_{n=1}^\infty b_n\) converges or diverges.
(b)
If \(\displaystyle \sum_{n=1}^\infty a_n\) diverges, what can be said about \(\displaystyle\sum_{n=1}^\infty b_n\text{?}\)
\(\displaystyle\sum_{n=1}^\infty b_n\) converges but the value cannot be determined.
\(\displaystyle\sum_{n=1}^\infty b_n\) converges and the value can be determined.
\(\displaystyle\sum_{n=1}^\infty b_n\) diverges.
It cannot be determined whether \(\displaystyle\sum_{n=1}^\infty b_n\) converges or diverges.
Activity 8.6.3 .
\begin{equation*}
\displaystyle \sum_{n=0}^\infty \frac{1}{2^n}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^n}+\cdots=\frac{1}{1-\frac{1}{2}}=2.
\end{equation*}
(a)
What can we say about the series
\begin{equation*}
\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots?
\end{equation*}
\(\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots\) converges to \(3\cdot 2=6\text{.}\)
\(\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots\) converges to some value other than 6.
\(\displaystyle 3+\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\cdots+\frac{3}{2^n}+\cdots\) diverges.
(b)
What do you think we can say about the series
\begin{equation*}
\displaystyle \frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots?
\end{equation*}
\(\displaystyle 3+\frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots\) converges to \(3\cdot 2=6\text{.}\)
\(\displaystyle 3+\frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots\) converges to some value other than 6.
\(\displaystyle 3+\frac{3.1}{2}+\frac{3.01}{4}+\frac{3.001}{8}+\cdots+\frac{3+(0.1)^n}{2^n}+\cdots\) diverges.
Activity 8.6.4 .
\begin{equation*}
\displaystyle 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\cdots
\end{equation*}
diverges.
(a)
What can we say about the series
\begin{equation*}
\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots?
\end{equation*}
\(\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots\) converges to a known value we can compute.
\(\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots\) converges to some unknown value.
\(\displaystyle 5+\frac{5}{2}+\frac{5}{3}+\frac{5}{4}+\cdots+\frac{5}{n}+\cdots\) diverges.
(b)
What do you think we can say about the series
\begin{equation*}
\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots?
\end{equation*}
\(\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots\) converges to a known value we can compute.
\(\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots\) converges to some unknown value.
\(\displaystyle 4.9+\frac{4.99}{2}+\frac{4.999}{3}+\frac{4.9999}{4}+\cdots+\frac{5-(0.1)^n}{n}+\cdots\) diverges.
Fact 8.6.5 . The Limit Comparison Test.
Let \(\displaystyle\sum a_n\) and \(\displaystyle\sum b_n\) be series with positive terms. If
\begin{equation*}
\lim_{n \to \infty} \frac{b_n}{a_n} = c
\end{equation*}
for some positive (finite) constant \(c\text{,}\) then \(\displaystyle\sum a_n\) and \(\displaystyle\sum b_n\) either both converge or both diverge.
Activity 8.6.6 .
Recall that
\begin{equation*}
\displaystyle \sum_{n=1}^\infty \frac{1}{2^n}
\end{equation*}
converges.
(a)
Let
\(b_n=\frac{1}{n}\text{.}\) Compute
\(\displaystyle \lim_{n\to\infty}\frac{\frac{1}{n}}{\frac{1}{2^n}}\text{.}\)
\(-\infty\text{.}\)
\(0\text{.}\)
\(\displaystyle \frac{1}{2}\text{.}\)
\(1\text{.}\)
\(\infty\text{.}\)
(b)
Does
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n}\) converge or diverge?
(c)
Let
\(\displaystyle b_n=\frac{1}{n^2}\text{.}\) Compute
\(\displaystyle \lim_{n\to\infty}\frac{\frac{1}{n^2}}{\frac{1}{2^n}}\text{.}\)
\(\infty\text{.}\)
\(\ln(2)\text{.}\)
\(1\text{.}\)
\(\displaystyle \frac{1}{2}\text{.}\)
\(-\infty\text{.}\)
(d)
Does
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n^2}\) converge or diverge?
(e)
Let \(\displaystyle\sum a_n\) and \(\displaystyle\sum b_n\) be series with positive terms. If
\begin{equation*}
\lim_{n \to \infty} \frac{b_n}{a_n}
\end{equation*}
diverges, can we conclude that \(\displaystyle \sum b_n\) converges or diverges?
Activity 8.6.7 .
We wish to determine if
\(\displaystyle \sum_{n=1}^\infty \frac{1}{4^n-1}\) converges or diverges using
Fact 8.6.5 .
(a)
Compute
\begin{equation*}
\displaystyle\lim_{n\to\infty}\frac{\frac{1}{4^n-1}}{\frac{1}{4^n}}.
\end{equation*}
(b)
Does the geometric series
\(\displaystyle \sum_{n=1}^\infty \frac{1}{4^n}\) converge or diverge by
Fact 8.4.2 ?
(c)
Does
\(\displaystyle \sum_{n=1}^\infty \frac{1}{4^n-1}\) converge or diverge?
Activity 8.6.8 .
We wish to determine if
\(\displaystyle \sum_{n=2}^\infty \frac{2}{\sqrt{n+3}}\) converges or diverges using
Fact 8.6.5 .
(a)
To which of the following should we compare \(\displaystyle \{a_n\}=\left\{\frac{2}{\sqrt{n+3}}\right\}\text{?}\)
\(\displaystyle \left\{\frac{1}{n}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{\sqrt{n}}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{n^2}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{2^n}\right\}\text{.}\)
(b)
Compute
\(\displaystyle \lim_{n\to\infty} \frac{b_n}{a_n}\text{.}\)
(c)
Compute
\(\displaystyle \lim_{n\to\infty} \frac{a_n}{b_n}\text{.}\)
(d)
What is true about \(\displaystyle \lim_{n\to\infty} \frac{b_n}{a_n}\) and \(\displaystyle \lim_{n\to\infty} \frac{a_n}{b_n}\text{?}\)
Their values are reciprocals.
Their values negative reciprocals.
They are both positive finite constants.
Only one value is a finite positive constant.
One value is \(0\) and the other value is infinite.
(e)
Does the series
\(\displaystyle \sum_{n=2}^\infty \frac{1}{\sqrt{n}}\) converge or diverge?
(f)
Using your chosen sequence and
Fact 8.6.5 , does
\(\displaystyle \sum_{n=2}^\infty \frac{2}{\sqrt{n+3}}\) converge or diverge?
Activity 8.6.9 .
We wish to determine if
\(\displaystyle \sum_{n=1}^\infty \frac{3}{n^2+8n+5}\) converges or diverges using
Fact 8.6.5 .
(a)
To which of the following should we compare \(\displaystyle \{x_n\}=\left\{\frac{3}{n^2+8n+5} \right\}\text{?}\)
\(\displaystyle \left\{\frac{1}{n}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{\sqrt{n}}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{n^2}\right\}\text{.}\)
\(\displaystyle \left\{\frac{1}{2^n}\right\}\text{.}\)
(b)
Using your chosen sequence and
Fact 8.6.5 , does
\(\displaystyle \frac{3}{n^2+8n+5}\) converge or diverge?
Activity 8.6.10 .
Use
Fact 8.6.5 to determine if the series
\(\displaystyle \sum_{n=5}^\infty \frac{2}{4^n}\) converges or diverges.
Activity 8.6.11 .
Consider sequences
\(\{a_n\}, \{b_n\}\) where
\(a_n\geq b_n\geq 0\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Plots of sequences \(\{a_n\}, \{b_n\}\) where \(a_n\geq b_n\geq 0\text{.}\)
(a)
Suppose that \(\displaystyle \sum_{n=0}^\infty a_n\) converges. What could be said about \(\{b_n\}\text{?}\)
\(\displaystyle \sum_{n=0}^\infty b_n\) converges.
\(\displaystyle \sum_{n=0}^\infty b_n\) diverges.
Whether or not \(\displaystyle \sum_{n=0}^\infty b_n\) converges or diverges cannot be determined with this information.
(b)
Suppose that \(\displaystyle \sum_{n=1}^\infty a_n=\sum_{n=1}^\infty \frac{1}{n+1}\) which diverges. Which of the following statements are true?
\(\displaystyle 0\leq \frac{1}{2n^2} \leq \frac{1}{n+1}\) for each \(n \geq 1\) and \(\displaystyle \sum_{n=1}^\infty \frac{1}{2n^2}\) is a convergent \(p\) -series where \(p=2\text{.}\)
\(\displaystyle 0\leq \frac{1}{2n}\leq \frac{1}{n+1}\) for each \(n \geq 1\) and \(\displaystyle \sum_{n=1}^\infty \frac{1}{2n}\) is a divergent \(p\) -series where \(p=1\text{.}\)
(c)
Suppose that \(\displaystyle \sum_{n=0}^\infty a_n\) was some series that diverges. What could be said about \(\{b_n\}\text{?}\)
\(\displaystyle \sum_{n=0}^\infty b_n\) converges.
\(\displaystyle \sum_{n=0}^\infty b_n\) diverges.
Whether or not \(\displaystyle \sum_{n=0}^\infty b_n\) converges or diverges cannot be determined with this information.
(d)
Suppose that \(\displaystyle \sum_{n=0}^\infty b_n\) diverges. What could be said about \(\{a_n\}\text{?}\)
\(\displaystyle \sum_{n=0}^\infty a_n\) converges.
\(\displaystyle \sum_{n=0}^\infty a_n\) diverges.
Whether or not \(\displaystyle \sum_{n=0}^\infty a_n\) converges or diverges cannot be determined with this information.
(e)
Suppose that \(\displaystyle \sum_{n=0}^\infty b_n=\sum_{n=0}^\infty \frac{1}{3^n}\) which converges. Which of the following statements are true?
\(\displaystyle 0\leq \frac{1}{3^n} \leq \frac{1}{2^n}\) for each \(n\) and \(\displaystyle \sum_{n=0}^\infty \frac{1}{2^n}\) is a convergent geometric series where \(\displaystyle |r|=\frac{1}{2} \lt 1\text{.}\)
\(\displaystyle 0\leq \frac{1}{3^n} \leq 1\) for each \(n\) and \(\displaystyle \sum_{n=0}^\infty 1\) diverges by the Divergence Test.
(f)
Suppose that \(\displaystyle \sum_{n=0}^\infty b_n\) was some series that converges. What could be said about \(\{a_n\}\text{?}\)
\(\displaystyle \sum_{n=0}^\infty a_n\) converges.
\(\displaystyle \sum_{n=0}^\infty a_n\) diverges.
Whether or not \(\displaystyle \sum_{n=0}^\infty a_n\) converges or diverges cannot be determined with this information.
Fact 8.6.12 .
Suppose we have sequences \(\{a_n\}, \{b_n\}\) so that for some \(k\) we have that \(0\leq b_n\leq a_n\) for each \(k\geq n\text{.}\) Then we have the following results:
If \(\displaystyle\sum_{k=n}^\infty a_n\) converges, then so does \(\displaystyle\sum_{k=n}^\infty b_n\text{.}\)
If \(\displaystyle\sum_{k=n}^\infty b_n\) diverges, then so does \(\displaystyle\sum_{k=n}^\infty a_n\text{.}\)
Activity 8.6.13 .
Suppose that you were handed positive sequences
\(\{a_n\}, \{b_n\}\text{.}\) For the first few values
\(a_n\geq b_n\text{,}\) but after that what happens is unclear until
\(n=100\text{.}\) Then for any
\(n\geq 100\) we have that
\(a_n \leq b_n\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Plots of sequences \(\{a_n\}, \{b_n\}\) where \(a_n\geq b_n\geq 0\) initially but eventually \(a_n\leq b_n\geq 0\text{.}\)
(a)
How might we best utilize
Fact 8.6.12 to determine the convergence of
\(\displaystyle \sum_{n=0}^\infty a_n\) or
\(\displaystyle \sum_{n=0}^\infty b_n\text{?}\)
Since
\(a_n\) is sometimes greater than, and sometimes less than
\(b_n\text{,}\) there is no way to utilize
Fact 8.6.12 .
Since initially, we have
\(b_n\leq a_n\text{,}\) we can utilize
Fact 8.6.12 by assuming
\(a_n\geq b_n\text{.}\)
Since we can rewrite
\(\displaystyle \sum_{n=0}^\infty a_n=\sum_{n=0}^{99} a_n+\sum_{n=100}^\infty a_n\) and
\(\displaystyle \sum_{n=0}^\infty b_n=\sum_{n=0}^{99} b_n+\sum_{n=100}^\infty b_n\) and
\(\displaystyle \sum_{n=0}^{99} a_n, \sum_{n=0}^{99} b_n\) are necessarily finite, we can compare
\(\displaystyle \sum_{n=100}^\infty a_n, \sum_{n=100}^\infty b_n\) with
Fact 8.6.12 .
Fact 8.6.14 . The Direct Comparison Test.
Let \(\displaystyle\sum a_n\) and \(\displaystyle\sum b_n\) be series with positive terms. If there is a \(k\) such that \(b_n\leq a_n\) for each \(n\geq k\text{,}\) then:
If \(\displaystyle \sum a_n\) converges, then so does \(\displaystyle \sum b_n\text{.}\)
If \(\displaystyle \sum b_n\) diverges, then so does \(\displaystyle \sum a_n\text{.}\)
Activity 8.6.15 .
Suppose we wish to determine if
\(\displaystyle \sum_{n=1}^\infty \frac{1}{2n+3}\) converged using
Fact 8.6.14 .
(a)
Does
\(\displaystyle \sum_{n=1}^\infty \frac{1}{3n}\) converge or diverge?
(b)
For which value \(k\) is \(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k\text{?}\)
\(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=0\text{.}\)
\(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=1\text{.}\)
\(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=2\text{.}\)
\(\displaystyle\frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k=3\text{.}\)
There is no \(k\) for which \(\displaystyle \frac{1}{3n}\leq \frac{1}{2n+3}\) for each \(n\geq k\text{.}\)
(c)
Use
Fact 8.6.14 and compare
\(\displaystyle \sum_{n=1}^\infty \frac{1}{2n+3}\) to
\(\displaystyle \sum_{n=1}^\infty \frac{1}{3n}\) to determine if
\(\displaystyle \sum_{n=1}^\infty \frac{1}{2n+3}\) converges or diverges.
Activity 8.6.16 .
Suppose we wish to determine if
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+5}\) converged using
Fact 8.6.14 .
(a)
Which series should we compare
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+5}\) to best utilize
Fact 8.6.14 ?
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n}\text{.}\)
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n^2}\text{.}\)
\(\displaystyle\sum_{n=1}^\infty \frac{1}{2^n}\text{.}\)
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n+5}\text{.}\)
\(\displaystyle\sum_{n=1}^\infty \frac{1}{n^2+5}\text{.}\)
\(\displaystyle\sum_{n=1}^\infty \frac{1}{2^n+5}\text{.}\)
(b)
Using your chosen series and
Fact 8.6.14 , does
\(\displaystyle \sum_{n=1}^\infty \frac{1}{n^2+5}\) converge or diverge?
Activity 8.6.17 .
For each of the following series, determine if it converges or diverges, and explain your choice.
(a)
\(\displaystyle \sum_{n= 4 }^\infty \frac{3}{\log\left(n\right) + 2}.\) (b)
\(\displaystyle \sum_{n= 3 }^\infty \frac{1}{n^{2} + 2 \, n + 1}.\)
Subsection 8.6.2 Videos
Figure 116. Video: Use the direct comparison and limit comparison tests to determine if a series converges or diverges
Subsection 8.6.3 Exercises