Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 9.1 Power Series (PS1)
Learning Outcomes
Approximate functions defined as power series.
Subsection 9.1.1 Activities
Activity 9.1.1 .
Suppose we could define a function as an βinfinite-length polynomialβ:
\begin{equation*}
f(x)=1+x+x^2+x^3+x^4+\cdots\text{.}
\end{equation*}
(a)
Would
\(f(1)\) be well-defined as a finite real number?
No, the sum would diverge towards \(\infty\text{.}\)
No, the sum would oscillate between \(0\) and \(1\text{.}\)
Yes, the sum would be \(0\text{.}\)
Yes, the sum would be \(1\text{.}\)
(b)
Would
\(f(-1)\) be well-defined as a finite real number?
No, the sum would diverge towards \(\infty\text{.}\)
No, the sum would oscillate between \(0\) and \(1\text{.}\)
Yes, the sum would be \(0\text{.}\)
Yes, the sum would be \(1\text{.}\)
(c)
Would
\(f(1/2)\) be well-defined as a finite real number?
No, the sum would diverge towards \(\infty\text{.}\)
Yes, the sum would be approximately \(1\text{.}\)
Yes, the sum would be approximately \(2\text{.}\)
Yes, the sum would be exactly \(2\text{.}\)
(d)
When is
\(f(x)\) well-defined as a finite real number?
Its value is \(\frac{x}{1-x}\) when \(|x|<1\text{.}\)
Its value is \(\frac{x}{1-x}\) when \(x<1\text{.}\)
Its value is \(\frac{1}{1-x}\) when \(|x|<1\text{.}\)
Its value is \(\frac{1}{1-x}\) when \(x<1\text{.}\)
Definition 9.1.2 .
Given a sequence of numbers \(a_n\) and a number \(c\text{,}\) we may define a function \(f(x)\) as a power series :
\begin{equation*}
f(x)=\sum_{n=0}^\infty a_n(x-c)^n = a_0+a_1(x-c)+a_2(x-c)^2+a_3(x-c)^3+\cdots\text{.}
\end{equation*}
The above power series is said to be centered at \(c\) . Often power series are centered at \(0\text{;}\) in this case, they may be written as:
\begin{equation*}
f(x)=\sum_{n=0}^\infty a_n x^n = a_0+a_1x+a_2x^2+a_3x^3+\cdots\text{.}
\end{equation*}
The domain of this function (often referred to as the
domain of convergence or
interval of convergence ) is exactly the set of
\(x\) -values for which the series converges.
Activity 9.1.3 .
In
SectionΒ 9.2 we will learn how to prove that
\(\displaystyle \sum_{n=0}^\infty \frac{x^n}{n!}\) converges for each real value
\(x\text{.}\) Thus the function
\begin{equation*}
f(x)=\displaystyle \sum_{n=0}^\infty \frac{x^n}{n!}=1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\frac{x^5}{120}+\cdots
\end{equation*}
has the domain of all real numbers.
(a)
To estimate \(f(2)\text{,}\) use technology to compute the first few terms as follows:
\begin{align*}
f(2)=\sum_{n=0}^\infty \frac{2^n}{n!} \amp = 1+2+\frac{2^2}{2}+\frac{2^3}{6}+\frac{2^4}{24}+\frac{2^5}{120}+\cdots \\
\amp = \unknown +\cdots \\
\amp \approx \unknown
\end{align*}
Which of these choices is the closest to this value?
\(\sqrt{2}\approx 1.414\text{.}\)
\(e^2\approx 7.389\text{.}\)
\(\sin(2)\approx 0.909\text{.}\)
\(\cos(2)\approx -0.416\text{.}\)
(b)
Estimate \(f(-1)\) in a similar fashion:
\begin{align*}
f(-1)=\sum_{n=0}^\infty \frac{\unknown}{n!} \amp = \unknown+\unknown+\unknown+\unknown+\unknown+\unknown+\cdots \\
\amp = \unknown +\cdots \\
\amp \approx \unknown
\end{align*}
Which of these choices is the closest to this value?
\(\frac{1}{\sqrt{1}}\approx 1.000\text{.}\)
\(\frac{1}{e^1}\approx 0.369\text{.}\)
\(\frac{1}{\sin(1)}\approx 1.188\text{.}\)
\(\frac{1}{\cos(1)}\approx 1.851\text{.}\)
Activity 9.1.4 .
The function
\begin{equation*}
f(x)=\displaystyle \sum_{n=0}^\infty \frac{x^n}{n!}=\sum_{n=0}^\infty \frac{1}{n!}(x-0)^n
\end{equation*}
is centered at \(0\text{.}\) Likewise, graphing the polynomial that uses the first six terms
\begin{equation*}
f_5(x)=1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\frac{x^5}{120}
\end{equation*}
alongside the graph of \(e^x\) reveals the illustration given in the following figure.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(e^x\approx 1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\frac{x^5}{120}\) near \(x=0\text{.}\)
\(e^x= 1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\frac{x^5}{120}\) near \(x=0\text{.}\)
\(e^x\approx 1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\frac{x^5}{120}\) for all \(x\text{.}\)
\(e^x= 1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\frac{x^5}{120}\) for all \(x\text{.}\)
Definition 9.1.5 .
Given a power series
\begin{equation*}
f(x)=\sum_{n=0}^\infty a_n(x-c)^n = a_0+a_1(x-c)+a_2(x-c)^2+a_3(x-c)^3+\cdots\text{,}
\end{equation*}
let
\begin{equation*}
f_N(x)=\sum_{n=0}^N a_n(x-c)^n = a_0+a_1(x-c)+a_2(x-c)^2+\cdots+a_N(x-c)^N
\end{equation*}
be its degree \(N\) polynomial approximation for \(x\) nearby \(c\text{.}\)
For example,
\begin{align*}
g_3(x)=\sum_{n=0}^3 n^2 (x-1)^n &= 0+(x-1)+4(x-1)^2+9(x-1)^3\\
&= -6+20x-23x^3+9x^3
\end{align*}
is a degree \(3\) approximation of \(g(x)=\sum_{n=0}^\infty n^2 (x-1)^n\) valid for \(x\) values nearby \(1\text{.}\)
Activity 9.1.6 .
Consider a function
\(p(x)\) defined by
\(\displaystyle p(x)=\sum_{n=0}^\infty \frac{2^n}{(2n)!}x^n.\)
(a)
Find
\(p_3(x)\text{,}\) the degree 3 polynomial approximation for
\(p(x)\text{.}\)
(b)
Use
\(p_3(x)\) to estimate
\(p(-1)\text{.}\)
Subsection 9.1.2 Videos
Figure 120. Video: Approximate functions defined as power series
Subsection 9.1.3 Exercises