Skip to main content
Logo image

Section 4.5 FTC for Definite Integrals (IN5)

Subsection 4.5.1 Activities

Activity 4.5.1.

Find the area between \(f(x)=\frac{1}{2}x+2\) and the \(x\)-axis from \(x=2\) to \(x=6\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 4.5.2.

Approximate the area under the curve \(f(x)=(x-1)^2+2\) on the interval \([1,5]\) using a left Riemann sum with four uniform subdivisions. Draw your rectangles on the graph.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Definition 4.5.3.

Let \(f(x)\) be a continuous function on the interval \([a,b]\text{.}\) Divide the interval into \(n\) subdivisions of equal width, \(\Delta x\text{,}\) and choose a point \(x_i\) in each interval. Then, the definite integral of \(f(x)\) from \(a\) to \(b\) is
\begin{equation*} \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x = \int_a^bf(x)dx \end{equation*}

Activity 4.5.4.

How does \(\displaystyle \int_2^6 \left(\frac{1}{2}x+2\right) \, dx\) relate to ActivityΒ 4.5.1? Could you use ActivityΒ 4.5.1 to find \(\displaystyle \int_0^4 \left(\frac{1}{2}x+2\right) \, dx\text{?}\) What about \(\displaystyle \int_1^7 \left(\frac{1}{2}x+2\right) \, dx\text{?}\)

Remark 4.5.5. Properties of Definite Integrals.

  1. If \(f\) is defined at \(x=a\text{,}\) then \(\displaystyle \int_a^a f(x) \, dx =0\text{.}\)
  2. If \(f\) is integrable on \([a,b]\text{,}\) then \(\displaystyle \int_a^b f(x) \, dx = - \displaystyle \int_b^a f(x) \, dx\text{.}\)
  3. If \(f\) is integrable on \([a,b]\) and \(c\) is in \([a,b]\text{,}\) then \(\displaystyle \int_a^b f(x) \, dx = \displaystyle \int_a^c f(x) \, dx + \displaystyle \int_c^b f(x) \, dx\text{.}\)
  4. If \(f\) is integrable on \([a,b]\) and \(k\) is a constant, then \(kf\) is integrable on \([a,b]\) and \(\displaystyle \int_a^b kf(x) \, dx = k\displaystyle \int_a^b f(x) \, dx\text{.}\)
  5. If \(f\) and \(g\) are integrable on \([a,b]\text{,}\) then \(f\pm g\) are integrable on \([a,b]\) and \(\displaystyle \int_a^b [f(x) \pm g(x)] \, dx =\displaystyle \int_a^b f(x) \, dx \pm \displaystyle \int_a^b g(x) \, dx\text{.}\)

Observation 4.5.7.

We’ve been looking at two big things in this chapter: antiderivatives and the area under a curve. In the early days of the development of calculus, they were not known to be connected to one another. The integral sign wasn’t originally used in both instances. (Gottfried Leibniz introduced it as an elongated S to represent the sum when finding the area.) Connecting these two seemingly separate problems is done by the Fundamental Theorem of Calculus

Activity 4.5.9.

Evaluate the following definite integrals. Include a sketch of the graph with the area you’ve found shaded in. Approximate the area to check to see if your definite integral answer makes sense. (Note: Just a guess, you don’t have to use Riemann sums. Use the grid to help.)
(a)
\(\displaystyle \int_0^2 \left(x^2+3\right) \, dx \)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(b)
\(\displaystyle \int_1^4 \left(\sqrt{x}\right) \, dx \)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(c)
\(\displaystyle \int_{-\pi/4}^{\pi/2} \left(\cos x\right) \, dx \)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 4.5.10.

Find the area between \(f(x)=2x-6 \) and the \(x\)-axis on the interval \([0,8]\) using
  1. geometry
  2. the definite integral
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
What do you notice?

Activity 4.5.11.

Find the area bounded by the curves \(f(x)=e^x-2\text{,}\) the \(x\)-axis, \(x=0\text{,}\) and \(x=1\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 4.5.12.

Set up a definite integral that represents the shaded area. Then find the area of the given region using the definite integral.
(a)
\(y=\frac{1}{x^2}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(b)
\(y=3x^2-x^3\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output

Activity 4.5.13.

Explain how to compute the exact value of each of the following definite integrals using the Fundamental Theorem of Calculus. Leave all answers in exact form, with no decimal approximations.
(a)
\begin{equation*} \int_{ -3 }^{ -2 } \left( -9 \, x^{3} - 9 \, x^{2} + 1 \right) dx \end{equation*}
(b)
\begin{equation*} \int_{ \frac{7}{6} \, \pi }^{ \frac{5}{4} \, \pi } \left( -3 \, \sin\left(x\right) \right) dx \end{equation*}
(c)
\begin{equation*} \int_{ 2 }^{ 6 } \left( 3 \, e^{x} \right) dx \end{equation*}

Subsection 4.5.2 Videos

Figure 71. Video for IN5

Subsection 4.5.3 Exercises