Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 7.6 Polar Area (CO6)
Learning Outcomes
Compute areas bounded by curves given in polar coordinates.
Subsection 7.6.1 Activities
Activity 7.6.1 .
Consider the regions bounded by polar coordinates
\(0\leq r \leq r_0\) and
\(0\leq \theta \leq \theta_0\) for various values of
\(r_0, \theta_0\text{.}\)
(a)
Sketch the region bound by polar coordinates
\(0\leq r \leq 1\) and
\(0\leq \theta \leq \dfrac{\pi}{3}\text{.}\) What is the area of this region?
(b)
Sketch the region bound by polar coordinates
\(0\leq r \leq 2\) and
\(0\leq \theta \leq \dfrac{\pi}{3}\text{.}\) What is the area of this region?
(c)
Sketch the region bound by polar coordinates
\(0\leq r \leq 5\) and
\(0\leq \theta \leq \dfrac{\pi}{3}\text{.}\) What is the area of this region?
(d)
Sketch the region bound by polar coordinates
\(0\leq r \leq 1\) and
\(0\leq \theta \leq \dfrac{\pi}{4}\text{.}\) What is the area of this region?
(e)
Sketch the region bound by polar coordinates
\(0\leq r \leq 5\) and
\(0\leq \theta \leq \dfrac{\pi}{4}\text{.}\) What is the area of this region?
Activity 7.6.2 .
What in general is the area of the region bound by polar coordinates
\(0\leq r \leq r_0\) and
\(0\leq \theta \leq \theta_0\text{?}\)
\(\displaystyle \displaystyle \pi \frac{r_0^2}{\theta_0}\)
\(\displaystyle \displaystyle \frac{r_0^2}{\pi \theta_0}\)
\(\displaystyle \displaystyle \theta_0 \frac{r_0^2}{\pi}\)
\(\displaystyle \displaystyle \theta\frac{r_0^2}{2}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Figure 109. Finding the polar area differential
Activity 7.6.3 .
Consider the βfan-shapedβ region between the pole and
\(r=f(\theta)\) as the angle
\(\theta\) ranges from
\(\alpha\) to
\(\beta\) as depicted in
FigureΒ 109 .
(a)
Which of the following best describes a Riemann sum which approximates the area of this region?
\(\displaystyle \displaystyle \sum_{k=1}^n f(\theta_k)\Delta \theta\)
\(\displaystyle \displaystyle \sum_{k=1}^n f(\theta_k)^2\Delta \theta\)
\(\displaystyle \displaystyle \sum_{k=1}^n \frac{f(\theta_k)^2}{2}\Delta \theta\)
\(\displaystyle \displaystyle \sum_{k=1}^n \pi f(\theta_k)^2\Delta \theta\)
(b)
Which of the following describes an integral which computes the area of this region?
\(\displaystyle \displaystyle \int_{\theta=\alpha}^{\theta=\beta} f(\theta)d\theta\)
\(\displaystyle \displaystyle \int_{\theta=\alpha}^{\theta=\beta}f(\theta)^2 d\theta\)
\(\displaystyle \displaystyle \int_{\theta=\alpha}^{\theta=\beta} \frac{f(\theta)^2}{2}d\theta\)
\(\displaystyle \displaystyle \int_{\theta=\alpha}^{\theta=\beta} \pi f(\theta)^2 d\theta\)
Fact 7.6.4 .
The area of the βfan-shapedβ region between the pole and \(r=f(\theta)\) as the angle \(\theta\) ranges from \(\alpha\) to \(\beta\) is given by
\begin{equation*}
\int_{\theta=\alpha}^{\theta=\beta} \frac{r^2}{2}d\theta\text{.}
\end{equation*}
Activity 7.6.5 .
(a)
Find an integral computing the area of the region defined by
\(0\leq r\leq-\cos(\theta)+5\) and
\(\pi/2\leq \theta\leq 3\pi/4\text{.}\)
(b)
Find the area enclosed by the cardioid
\(r=2(1+\cos(\theta)\text{.}\)
(c)
Find the area enclosed by one loop of the 4-petaled rose
\(r=\cos(2\theta)\text{.}\)
Subsection 7.6.2 Videos
Figure 110. Video for CO6
Subsection 7.6.3 Exercises