Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 6.5 Density, Mass, and Center of Mass (AI5)
Learning Outcomes
Set up integrals to solve problems involving density, mass, and center of mass.
Subsection 6.5.1 Activities
Activity 6.5.1 .
Consider a rectangular prism with a 10 meters
\(\times\) 10 meters square base and height 20 meters. Suppose the density of the material in the prism increases with height, following the function
\(\delta(h)=10+h\) kg/m
\(^3\text{,}\) where
\(h\) is the height in meters.
(a)
If one were to cut this prism, parallel to the base, into 4 pieces with height 5 meters, what would the volume of each piece be?
(b)
Consider the piece sitting on top of the slice made at height
\(h=5\text{.}\) Using a density of
\(\delta(5)=15\) kg/m
\(^3\text{,}\) and the volume you found in (a), estimate the mass of this piece.
\(500\cdot 5=2500\) kg
\(500\cdot 15=7500\) kg
\(500\cdot 15\cdot 5=37500\) kg
(c)
Is this estimate the actual mass of this piece?
Activity 6.5.2 .
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(10\times 10\times 20\) prism sliced into 4 pieces.
(a)
Fill out the following table.
\begin{equation*}
\begin{array}{|c|c|c|c|}
\hline
h_i & \delta(h_i) & \text{Volume} & \text{Estimated Mass}\\
\hline
h_4=15\ \text{m} & \delta(15)=25\ \text{kg/m}^3 & 500\ \text{m}^3 & \\
\hline
h_3=10\ \text{m} & \delta(10)=20\ \text{kg/m}^3 & 500\ \text{m}^3 & \\
\hline
h_2=5\ \text{m} & \delta(5)=15\ \text{kg/m}^3 & 500\ \text{m}^3 & 7500\ \text{kg}\\
\hline
h_1=0\ \text{m} & \delta(0)=10\ \text{kg/m}^3 & 500\ \text{m}^3 & \\
\hline
\end{array}
\end{equation*}
(b)
What is the estimated mass of the rectangular prism?
Activity 6.5.3 .
Suppose instead that we sliced the prism from
ActivityΒ 6.5.1 into 5 pieces of height 4 meters.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(10\times 10\times 20\) prism sliced into 5 pieces.
(a)
Fill out the following table.
\begin{equation*}
\begin{array}{|c|c|c|c|}
\hline
h_i & \delta(h_i) & \text{Volume} & \text{Estimated Mass}\\
\hline
h_5=16\ \text{m} & \delta(16)=26\ \text{kg/m}^3 & 400\ \text{m}^3 & \\
\hline
h_4=12\ \text{m} & \delta(12)=22\ \text{kg/m}^3 & 400\ \text{m}^3 & \\
\hline
h_3=8\ \text{m} & \delta(8)=18\ \text{kg/m}^3 & 400\ \text{m}^3 & \\
\hline
h_2=4\ \text{m} & \delta(4)=14\ \text{kg/m}^3 & 400\ \text{m}^3 & \phantom{7500\ \text{kg}}\\
\hline
h_1=0\ \text{m} & \delta(0)=10\ \text{kg/m}^3 & 400\ \text{m}^3 & \\
\hline
\end{array}
\end{equation*}
(b)
What is the estimated mass of the rectangular prism?
Activity 6.5.4 .
Activity 6.5.5 .
Suppose now that we slice the prism from
ActivityΒ 6.5.1 into slices of height
\(\Delta h\) meters.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\(10\times 10\times 20\) prism sliced into many pieces.
(a)
Consider the piece sitting atop the slice made at height \(h_i\text{.}\) Using \(\delta(h_i)=10+h_i\) as the estimate for the density of this piece, what is the mass of this piece?
\(\displaystyle (10+h)100\cdot h_i\)
\(\displaystyle (10+\Delta h)100\cdot h_i\)
\(\displaystyle (10+h_i)100\cdot \Delta h\)
\(\displaystyle (10+h_i)100\cdot h\)
Activity 6.5.6 .
Consider a cylindrical cone with a base radius of 15 inches and a height of 60 inches. Suppose the density of the cone is
\(\delta(h)= 15+\sqrt{h}\) oz/in
\(^3\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
Let \(r_2\) be the radius of the circular cross section of the cone, made at height 30 inches. Recall that \(\Delta ABC, \Delta AB'C'\) are similar triangles, what is \(r_2\text{?}\)
15 inches.
7.5 inches.
30 inches.
60 inches.
(b)
What is the volume of a cylinder with radius
\(r_1=15\) inches and height
\(30\) inches?
(c)
What is the volume of a cylinder with radius
\(r_2\) inches and height
\(30\) inches?
Activity 6.5.7 .
Suppose that we estimate the mass of the cone from
ActivityΒ 6.5.6 with 2 cylinders of height 30 inches.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
Fill out the following table.
\begin{equation*}
\begin{array}{|c|c|c|c|}
\hline
h_i & \delta(h_i) & \text{Volume} & \text{Estimated Mass}\\
\hline
h_2=30\ \text{in} & \delta(30)=15+\sqrt{30}\ \text{oz/in}^3 & \pi(7.5)^2\cdot30\ \text{in}^3 & \phantom{6500\ \text{kg}}\\
\hline
h_1=0\ \text{in} & \delta(0)=15\ \text{oz/in}^3 & \pi(15)^2\cdot30\ \text{in}^3 & \\
\hline
\end{array}
\end{equation*}
(b)
What is the estimated mass of the cone?
Activity 6.5.8 .
Suppose that we estimate the mass of the cone from
ActivityΒ 6.5.6 with 3 cylinders of height 20 inches.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
Fill out the following table.
\begin{equation*}
\begin{array}{|c|c|c|c|}
\hline
h_i & \delta(h_i) & \text{Volume} & \text{Estimated Mass}\\
\hline
h_2=40\ \text{in} & \delta(40)=15+\sqrt{40}\ \text{oz/in}^3 & \pi(5)^2\cdot20\ \text{in}^3 & \phantom{6500\ \text{kg}}\\
\hline
h_2=20\ \text{in} & \delta(20)=15+\sqrt{20}\ \text{oz/in}^3 & \pi(10)^2\cdot20\ \text{in}^3 & \phantom{6500\ \text{kg}}\\
\hline
h_1=0\ \text{in} & \delta(0)=15\ \text{oz/in}^3 & \pi(15)^2\cdot20\ \text{in}^3 & \\
\hline
\end{array}
\end{equation*}
(b)
What is the estimated mass of the cone?
Activity 6.5.9 .
Suppose that we estimate the mass of the cone from
ActivityΒ 6.5.6 with cylinders of height
\(\Delta h\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
Consider the piece sitting atop the slice made at height \(h_i\text{.}\) Using \(\delta(h_i)=15+\sqrt{h_i}\) as the estimate for the density of this cylinder, what is the mass of this cylinder?
\(\displaystyle (15+\sqrt{h})\pi r_i^2\cdot \Delta h\)
\(\displaystyle (15+\sqrt{h_i})\pi r_i^2\cdot \Delta h\)
\(\displaystyle (15+\Delta h)\pi r_i^2\cdot \Delta h_i\)
\(\displaystyle (15+\sqrt{h_i})\pi r^2\cdot \Delta h\)
Activity 6.5.10 .
(a)
Fact 6.5.11 .
Consider a solid where the cross section of the solid at \(x=x_i\) has area \(A(x_i)\text{,}\) and the density when \(x=x_i\) is \(\delta(x_i)\text{.}\) Suppose the interval \([a,b]\) represents the \(x\) values of this solid. If one slices the solid into \(n\) pieces of width \(\Delta x=\frac{b-a}{n}\text{,}\) then one can approximate the mass of the solid by
\begin{equation*}
\sum_{i=1}^n \delta(x_i)A(x_i)\Delta x.
\end{equation*}
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
We can then find actual mass by taking the limit as \(n\to\infty\text{:}\)
\begin{equation*}
\lim_{n\to\infty} \left(\sum_{i=1}^n \delta(x_i)A(x_i)\Delta x\right)=\int_a^b \delta(x)A(x) dx.
\end{equation*}
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Activity 6.5.12 .
Consider that for the prism from
ActivityΒ 6.5.1 , a cross section of height
\(h\) is
\(A(h)=10^2=100\) m
\(^2\text{.}\) Also recall that the density of the prism is
\(\delta(h)=10+h\) kg/m
\(^3\text{,}\) where
\(h\) is the height in meters.
Activity 6.5.13 .
Consider that for the cone from
ActivityΒ 6.5.6 , a cross section of height
\(h\) is
\(A(h)=\pi r^2\) in
\(^2\text{,}\) where
\(r\) is the radius of the circular cross-section at height
\(h\) inches. Also recall that the density of the cone is
\(\delta(h)=15+\sqrt{h}\) oz/in
\(^3\text{,}\) where
\(h\) is the height in inches.
(a)
When the height is
\(h\) inches, what is
\(r\text{?}\)
Hint . (b)
Find
\(A(h)\) as a function of
\(h\) using this information.
(c)
Activity 6.5.14 .
\(8\times 8\) \(\delta(h)=10+\cos(\pi h)\) \(^3\) \(h\)
(a)
When the height is
\(h\) feet, what is the area of the square cross section at that height,
\(A(h)\text{?}\)
Hint . (b)
Activity 6.5.15 .
Consider a board sitting atop the
\(x\) -axis with six
\(1\times 1\) blocks each weighing 1 kg placed upon it in the following way: two blocks are atop the 1, three blocks are atop the 2, and one block is atop the 6.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Which of the following describes the \(x\) -value of the center of gravity of the board with the blocks?
\(\displaystyle\frac{1+6}{2}=3.5\text{.}\)
\(\displaystyle\frac{1+2+6}{3}=3\text{.}\)
\(\displaystyle\frac{2\cdot1+3\cdot2+1\cdot6}{6}\approx 2.3333\text{.}\)
Activity 6.5.16 .
Consider a board sitting atop the
\(x\) -axis with six
\(1\times 1\) blocks each weighing 1 kg placed upon it in the following way: two blocks are atop the 1, three blocks are atop the 2, and one block is atop the 8.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Find the
\(x\) -value of the center of gravity of the board with the blocks.
Fact 6.5.17 .
Consider a solid where the cross section of the solid at \(x=x_i\) has area \(A(x_i)\text{,}\) and the density when \(x=x_i\) is \(\delta(x_i)\text{.}\) Suppose the interval \([a,b]\) represents the \(x\) values of this solid. Since each slice has approximate mass \(\delta(x_i)A(x_i)\delta(x_i)\text{,}\) we can approximate the center of mass by taking the weighted βaverageβ of the \(x_i\) -values weighted by the associated mass:
\begin{equation*}
\frac{\sum_{i=1}^n x_i\delta(x_i)A(x_i)\Delta x}{\sum_{i=1}^n \delta(x_i)A(x_i)\Delta x}.
\end{equation*}
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
We can then find actual center of mass by taking the limit as \(n\to\infty\text{:}\)
\begin{equation*}
\lim_{n\to\infty} \left(\frac{\sum_{i=1}^n x_i\delta(x_i)A(x_i)\Delta x}{\sum_{i=1}^n \delta(x_i)A(x_i)\Delta x}\right)=\frac{\int_a^b x\delta(x)A(x)dx}{\int_a^b \delta(x)A(x)dx}=\frac{\int_a^b x\delta(x)A(x)dx}{\text{The Total Mass}}.
\end{equation*}
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Activity 6.5.18 .
Consider that for the prism from
ActivityΒ 6.5.12 , a cross section of height
\(h\) is
\(A(h)=10^2=100\) m
\(^2\text{.}\) Also recall that the density of the prism is
\(\delta(h)=10+h\) kg/m
\(^3\text{,}\) where
\(h\) is the height in meters, and that we found the total mass to be 40000 kg.
Use
FactΒ 6.5.17 to find the height where the center of mass occurs.
Activity 6.5.19 .
Consider that for the prism from
ActivityΒ 6.5.13 , a cross section of height
\(h\) is
\(A(h)=\pi\cdot \left( \frac{60-h}{4}\right)^2\) in
\(^2\text{.}\) Also recall that the density of the cone is
\(\delta(h)=15+\sqrt{h}\) oz/in
\(^3\text{,}\) where
\(h\) is the height in inches, and that we found the total mass to be about 142492.6 oz.
Use
FactΒ 6.5.17 to find the height where the center of mass occurs.
Activity 6.5.20 .
Consider that for the pyramid from
ActivityΒ 6.5.14 , a cross section of height
\(h\) is
\(A(h)=\pi\cdot \left( \frac{16-h}{2}\right)^2\) ft
\(^2\text{.}\) Also recall that the density of the pyramid is
\(\delta(h)=10+\cos{\pi h}\) lb/feet
\(^3\text{,}\) where
\(h\) is the height in feet, and that we found the total mass to be about 3414.14.6 lb.
Use
FactΒ 6.5.17 to find the height where the center of mass occurs.
Subsection 6.5.2 Videos
Figure 94. Video: Set up integrals to solve problems involving density, mass, and center of mass
Subsection 6.5.3 Exercises