Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 6.4 Surface Areas of Revolution (AI4)
Learning Outcomes
Compute surface areas of surfaces of revolution.
Subsection 6.4.1 Activities
Fact 6.4.1 .
A
frustum is the portion of a cone that lies between one or two parallel planes.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
The surface area of the βsideβ of the frustum is:
\begin{equation*}
2\pi \frac{r+R}{2}\cdot l
\end{equation*}
where \(r\) and \(R\) are the radii of the bases, and \(l\) is the length of the side.
Note that if
\(r=R\text{,}\) this reduces to the surface area of a βsideβ of a cylinder.
Activity 6.4.2 .
Suppose we wanted to find the surface area of the the solid of revolution generated by rotating
\begin{equation*}
y=\sqrt{x}, 0\leq x\leq 4
\end{equation*}
about the \(y\) -axis.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
(a)
Suppose we wanted to estimate the surface area with two frustums with
\(\Delta x=2\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
What is the surface area of the frustum formed by rotating the line segment from
\((0,0)\) to
\((2, \sqrt{2})\) about the
\(x\) -axis?
\(\displaystyle 2\pi \frac{0+\sqrt{2}}{2}\cdot2\)
\(\displaystyle 2\pi \frac{0+\sqrt{2}}{2}\cdot\sqrt{2^2+\sqrt{2}^2}\)
\(\displaystyle \pi \sqrt{2}^2\cdot2\)
\(\displaystyle \pi \sqrt{2}^2\cdot\sqrt{2^2+\sqrt{2}^2}\)
(b)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
What is the surface area of the frustum formed by rotating the line segment from
\((2,\sqrt{2})\) to
\((4, 2)\) about the
\(x\) -axis?
\(\displaystyle 2\pi \frac{4+\sqrt{2}}{2}\cdot\sqrt{2}\)
\(\displaystyle 2\pi \frac{4+\sqrt{2}}{2}\cdot\sqrt{6}\)
\(\displaystyle 2\pi \frac{4+\sqrt{2}}{2}\cdot\sqrt{6-2\sqrt{2}}\)
(c)
Suppose we wanted to estimate the surface area with four frustums with
\(\Delta x=1\text{.}\)
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
\begin{equation*}
\begin{array}{|c|c|c|c|c|c|}
\hline
x_i & \Delta x & r_i & R_i & l & \text{Estimated Surface Area}\\
\hline
x_1=0 & 1 & 0 & 1 & \sqrt{1^2+1^2} &\\
\hline
x_2=1 & 1& 1 & \sqrt{2} & \sqrt{1^2+(\sqrt{2}-1)^2} & \\
\hline
x_3=2 & 1& \sqrt{2} & \sqrt{3} & \\
\hline
x_4=3 & 1 & 3 & 2 & \\
\hline
\end{array}
\end{equation*}
(d)
Suppose we wanted to estimate the surface area with
\(n\) frustums.
Diagram Exploration Keyboard Controls
Key
Action
Enter, A
Activate keyboard driven exploration
B
Activate menu driven exploration
Escape
Leave exploration mode
Cursor down
Explore next lower level
Cursor up
Explore next upper level
Cursor right
Explore next element on level
Cursor left
Explore previous element on level
X
Toggle expert mode
W
Extra details if available
Space
Repeat speech
M
Activate step magnification
Comma
Activate direct magnification
N
Deactivate magnification
Z
Toggle subtitles
C
Cycle contrast settings
T
Monochrome colours
L
Toggle language (if available)
K
Kill current sound
Y
Stop sound output
O
Start and stop sonification
P
Repeat sonification output
Let
\(f(x)=\sqrt{x}\text{.}\) Which of the following expressions represents the surface area generated bo rotating the line segment from
\((x_0, f(x_0))\) to
\((\Delta x, f(x_0+\Delta x))\) about the
\(x\) -axis?
\(\displaystyle \pi \left(\frac{f(x_0)+f(x_0+\Delta x)}{2}\right)^2\sqrt{(\Delta x)^2+(f(x_0+\Delta x)-f(x_0))^2}\text{.}\)
\(\displaystyle 2\pi\frac{f(x_0)+f(x_0+\Delta x)}{2}\sqrt{(\Delta x)^2+(f(x_0+\Delta x)-f(x_0))^2}\text{.}\)
\(\displaystyle 2\pi\frac{f(x_0)+f(x_0+\Delta x)}{2}\Delta x\text{.}\)
(e)
Which of the following Riemann sums best estimates the surface area of the solid generated by rotating \(y=\sqrt{x}\) over \([0,4]\) about the \(x\) -axis ? Let \(f(x)=\sqrt{x}\text{.}\)
\(\displaystyle \sum \pi \left(\frac{f(x_i)+f(x_i+\Delta x)}{2}\right)^2\sqrt{(\Delta x)^2+(f(x_i+\Delta x)-f(x_i))^2}\text{.}\)
\(\displaystyle \sum 2\pi\frac{f(x_i)+f(x_i+\Delta x)}{2}\sqrt{(\Delta x)^2+(f(x_i+\Delta x)-f(x_i))^2}\text{.}\)
\(\displaystyle \sum 2\pi\frac{f(x_i)+f(x_0+\Delta x)}{2}\Delta x\text{.}\)
Fact 6.4.3 .
\begin{align*}
\lim_{\Delta x\to 0}\sqrt{(\Delta x)^2+(f(x_i+\Delta x)-f(x_i))^2} & = \lim_{\Delta x\to 0} \sqrt{(\Delta x)^2\left(1+\left(\frac{f(x_i+\Delta x)-f(x_i)}{\Delta x} \right)^2\right)}\\
&= \lim_{\Delta x\to 0} \sqrt{1+\left(\frac{f(x_i+\Delta x)-f(x_i)}{\Delta x} \right)^2}\Delta x\\
&=\sqrt{1+(f'(x))^2}dx,
\end{align*}
and that
\begin{equation*}
\lim_{\Delta x\to 0} \frac{f(x_i)+f(x_i+\Delta x)}{2}=f(x_i).
\end{equation*}
Thus given a function \(f(x)\geq 0\) over \([a,b]\text{,}\) the surface area of the solid generated by rotating this function about the \(x\) -axis is
\begin{equation*}
SA=\int_a^b 2\pi f(x)\sqrt{1+(f'(x))^2}dx.
\end{equation*}
Activity 6.4.4 .
Consider again the solid generated by rotating
\(y=\sqrt{x}\) over
\([0,4]\) about the
\(x\) -axis.
(a)
Find an integral which computes the surface area of this solid.
(b)
If we instead rotate
\(y=\sqrt{x}\) over
\([0,4]\) about the
\(y\) -axis, what is an integral which computes the surface area for this solid?
Activity 6.4.5 .
Consider again the function
\(f(x)=\ln(x)+1\) over
\([1,5]\text{.}\)
(a)
Find an integral which computes the surface area of the solid generated by rotating the above curve about the
\(x\) -axis.
(b)
Find an integral which computes the surface area of the solid generated by rotating the above curve about the
\(y\) -axis.
Subsection 6.4.2 Videos
Figure 93. Video: Compute surface areas of surfaces of revolution
Subsection 6.4.3 Exercises