Skip to main content
Logo image

Section 6.4 Surface Areas of Revolution (AI4)

Subsection 6.4.1 Activities

Activity 6.4.2.

Suppose we wanted to find the surface area of the the solid of revolution generated by rotating
\begin{equation*} y=\sqrt{x}, 0\leq x\leq 4 \end{equation*}
about the \(y\)-axis.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
(a)
Suppose we wanted to estimate the surface area with two frustums with \(\Delta x=2\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
What is the surface area of the frustum formed by rotating the line segment from \((0,0)\) to \((2, \sqrt{2})\) about the \(x\)-axis?
  1. \(\displaystyle 2\pi \frac{0+\sqrt{2}}{2}\cdot2\)
  2. \(\displaystyle 2\pi \frac{0+\sqrt{2}}{2}\cdot\sqrt{2^2+\sqrt{2}^2}\)
  3. \(\displaystyle \pi \sqrt{2}^2\cdot2\)
  4. \(\displaystyle \pi \sqrt{2}^2\cdot\sqrt{2^2+\sqrt{2}^2}\)
(b)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
What is the surface area of the frustum formed by rotating the line segment from \((2,\sqrt{2})\) to \((4, 2)\) about the \(x\)-axis?
  1. \(\displaystyle 2\pi \frac{4+\sqrt{2}}{2}\cdot\sqrt{2}\)
  2. \(\displaystyle 2\pi \frac{4+\sqrt{2}}{2}\cdot\sqrt{6}\)
  3. \(\displaystyle 2\pi \frac{4+\sqrt{2}}{2}\cdot\sqrt{6-2\sqrt{2}}\)
(c)
Suppose we wanted to estimate the surface area with four frustums with \(\Delta x=1\text{.}\)
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
\begin{equation*} \begin{array}{|c|c|c|c|c|c|} \hline x_i & \Delta x & r_i & R_i & l & \text{Estimated Surface Area}\\ \hline x_1=0 & 1 & 0 & 1 & \sqrt{1^2+1^2} &\\ \hline x_2=1 & 1& 1 & \sqrt{2} & \sqrt{1^2+(\sqrt{2}-1)^2} & \\ \hline x_3=2 & 1& \sqrt{2} & \sqrt{3} & \\ \hline x_4=3 & 1 & 3 & 2 & \\ \hline \end{array} \end{equation*}
(d)
Suppose we wanted to estimate the surface area with \(n\) frustums.
Diagram Exploration Keyboard Controls
Key Action
Enter, A Activate keyboard driven exploration
B Activate menu driven exploration
Escape Leave exploration mode
Cursor down Explore next lower level
Cursor up Explore next upper level
Cursor right Explore next element on level
Cursor left Explore previous element on level
X Toggle expert mode
W Extra details if available
Space Repeat speech
M Activate step magnification
Comma Activate direct magnification
N Deactivate magnification
Z Toggle subtitles
C Cycle contrast settings
T Monochrome colours
L Toggle language (if available)
K Kill current sound
Y Stop sound output
O Start and stop sonification
P Repeat sonification output
Let \(f(x)=\sqrt{x}\text{.}\) Which of the following expressions represents the surface area generated bo rotating the line segment from \((x_0, f(x_0))\) to \((\Delta x, f(x_0+\Delta x))\) about the \(x\)-axis?
  1. \(\displaystyle \pi \left(\frac{f(x_0)+f(x_0+\Delta x)}{2}\right)^2\sqrt{(\Delta x)^2+(f(x_0+\Delta x)-f(x_0))^2}\text{.}\)
  2. \(\displaystyle 2\pi\frac{f(x_0)+f(x_0+\Delta x)}{2}\sqrt{(\Delta x)^2+(f(x_0+\Delta x)-f(x_0))^2}\text{.}\)
  3. \(\displaystyle 2\pi\frac{f(x_0)+f(x_0+\Delta x)}{2}\Delta x\text{.}\)
(e)
Which of the following Riemann sums best estimates the surface area of the solid generated by rotating \(y=\sqrt{x}\) over \([0,4]\) about the \(x\)-axis ? Let \(f(x)=\sqrt{x}\text{.}\)
  1. \(\displaystyle \sum \pi \left(\frac{f(x_i)+f(x_i+\Delta x)}{2}\right)^2\sqrt{(\Delta x)^2+(f(x_i+\Delta x)-f(x_i))^2}\text{.}\)
  2. \(\displaystyle \sum 2\pi\frac{f(x_i)+f(x_i+\Delta x)}{2}\sqrt{(\Delta x)^2+(f(x_i+\Delta x)-f(x_i))^2}\text{.}\)
  3. \(\displaystyle \sum 2\pi\frac{f(x_i)+f(x_0+\Delta x)}{2}\Delta x\text{.}\)

Activity 6.4.4.

Consider again the solid generated by rotating \(y=\sqrt{x}\) over \([0,4]\) about the \(x\)-axis.
(a)
Find an integral which computes the surface area of this solid.
(b)
If we instead rotate \(y=\sqrt{x}\) over \([0,4]\) about the \(y\)-axis, what is an integral which computes the surface area for this solid?

Activity 6.4.5.

Consider again the function \(f(x)=\ln(x)+1\) over \([1,5]\text{.}\)
(a)
Find an integral which computes the surface area of the solid generated by rotating the above curve about the \(x\)-axis.
(b)
Find an integral which computes the surface area of the solid generated by rotating the above curve about the \(y\)-axis.

Subsection 6.4.2 Videos

Figure 93. Video: Compute surface areas of surfaces of revolution

Subsection 6.4.3 Exercises